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ABSTRACT
We determined host use and glochidial metamorphosis success of four federally endangered mussel species from 

the Apalachicola-Chattahoochee-Flint River Basin. Fishes of 19-27 species in a total of 14 families were tested as poten-
tial hosts for each mussel species. Metamorphosis of Pleurobema pyriforme was observed only on six minnow species 
(Cyprinidae): Cyprinella venusta, Nocomis leptocephalus, Notropis amplamala, N. lutipinnis, Pimephales promelas and 
Semotilus atromaculatus, and metamorphosis success was >27% for all six species. Metamorphosis of Medionidus 
penicillatus was observed only on four darter species (Percidae): Etheostoma inscriptum, E. swaini, Percina crypta, 
and P. nigrofasciata, but metamorphosis success varied among species and was highest on E. inscriptum (40%) and P. 
nigrofasciata (39%). Metamorphosis of Hamiota subangulata was observed only on three species of black basses (Cen-
trarchidae): Micropterus cataractae, M. coosae, and M. salmoides, and metamorphosis success was >78% on all three 
species. Metamorphosis of Amblema neislerii was observed on 23 species in seven families, indicating that this spe-
cies is a host generalist, but metamorphosis success varied widely among species. These data augment existing host 
information for these species and provide a clearer picture of host breadth and the relative suitability of host species. 

KEY WORDS Amblema neislerii, Pleurobema pyriforme, Hamiota subangulata, Medionidus penicillatus, life history, 
glochidia

INTRODUCTION
The Apalachicola-Chattahoochee-Flint Basin (ACF) 

in eastern Alabama, northwestern Florida, and western 
Georgia has a diverse mussel fauna of 32 species, in-
cluding eight endemic species (Brim Box & Williams, 
2000; Williams et al., 2008). Dams, water pollution, and 
more recently, heavy and contentious water withdrawal 
(Pierce et al., 1984; Ruhl, 2005) all have contributed 
to declines in the mussel fauna, and six species in the 
basin are listed as federally endangered or threatened. 
Life history information is needed for the conservation of 
these species.  

Metamorphosis of mussel larvae (glochidia) to ju-
venile mussels usually requires parasitism on fishes, but 
host use varies from generalists that can use multiple 
fish species, to specialists that can metamorphose on 
only one or a few species (Kat, 1984; Barnhart et al., 
2008; Haag, 2012). Despite the recent proliferation of 
host studies, host information remains lacking for many  

 
species and much available information is incomplete 
or potentially inaccurate (Haag & Warren, 2003). Ac-
curate and comprehensive knowledge of host fishes is 
necessary for mussel recovery because suitable hosts 
must be available in sufficient numbers and at the ap-
propriate time, and captive propagation programs also 
depend on this information (NNMCC, 1998; Haag & Wil-
liams, 2014). Host information exists for five of the fed-
erally listed ACF mussel species (O’Brien & Brim Box, 
1999; O’Brien & Williams, 2002; Fritts et al., 2012a), but 
for most, only a limited number of potential hosts were 
tested and quantitative assessment of host suitability 
was not conducted. The objective of this study was to 
provide more comprehensive host information and mea-
sures of metamorphosis success on fishes for Hamiota 
subangulata, Medionidus penicillatus, Pleurobema pyri-
forme, and Amblema neislerii.



METHODS
Adult female mussels were collected from the ACF 

Basin from October 2010 to May 2012 (Tables 1-4). We 
inspected the gills of each mussel by slightly opening 
the valves with either an oyster knife for A. neislerii or 
with our thumbnail for H. subangulata, P. pyriforme, 
and M. penicillatus. Gravid females were identified by 
the presence of swollen gills. We collected five gravid 
mussels of a particular species on each sampling date 
and transported them in river water in aerated coolers 
to the Aquatic Science Laboratory at the University of 
Georgia (UGA) where they were held in dechlorinated 
municipal water at 17-20º C. Female P. pyriforme and A. 
neislerii released glochidia spontaneously in the labora-
tory within two days, and we extracted glochidia from H. 
subangulata and M. penicillatus within seven days of the 
original collection by flushing the gills with water through 
a syringe. We returned all females to their collection site 
within 28 days after collection. 

Host suitability trials were conducted following 
Neves et al. (1985) and Fritts et al. (2012a). For each 
mussel species we tested the suitability of 19-27 fish 
species representing a total of 14 families (Tables 
1-4). Most fishes were collected from rivers and ponds 
throughout Georgia using a nylon seine and backpack 
electrofisher, but some species were obtained from fed-
eral, state, or private hatcheries. Collections of wild fish 
focused on locations where mussels were not present 
to avoid potential acquired immunity from previous glo-
chidial exposures (Dodd et al., 2006). Fish were trans-
ported to UGA in aerated coolers or hauling tanks and 
held in dechlorinated tap water until the experiments be-
gan. Fish nomenclature follows Page et al. (2013). 

Glochidia viability for each female was quantified 
prior to host trials by adding a saturated sodium chloride 
(NaCl) solution to a subsample of glochidia and count-
ing the number of glochidia that closed their shells in 
response (Lefevre & Curtis, 1912; Fritts et al., 2014). If 
viability was less than 90%, glochidia from that female 
were not used in the experiment. Glochidial viability was 
>90% for all five individuals of H. subangulata, M. peni-
cillatus, and P. pyriforme but for only three individuals 
of A. neislerii. For each species, glochidia were pooled 
from all females with >90% viability then enumerated by 
placing them in a known volume of water, counting the 
number of viable glochidia in ten 200-µl subsamples, 
and extrapolating the total number of viable glochidia 
from the mean subsample count. A standardized inocu-
lation suspension was then made by diluting to a con-
centration of 4000 viable glochidia L-1. 

Potential hosts were exposed to glochidia by  
allowing the fish to swim for 15 min in the inoculation 
suspension. Glochidia were kept in suspension with 

vigorous aeration and a large-bulb pipette. Following  
exposure, fish were removed from the inoculation  
suspension, rinsed with fresh water to remove unat-
tached or loosely attached glochidia that might influence 
estimates of metamorphosis success (see subsequent), 
and placed in holding chambers. All fishes were held  
in individual tanks (one fish per tank) in a modified  
recirculating aquaculture system (AHAB®; Aquatic Habi-
tats Inc., Apopka, Florida, USA), except for Threadfin 
Shad (Dorosoma petenense). Threadfin Shad are diffi-
cult to hold in captivity, and all individuals of this species 
were held in a single 800-L round, communal tank to 
increase survival. Static water changes (50% renewal) 
were conducted daily after siphoning the bottom of the 
tanks (see subsequent). 

The outflow from each AHAB tank was equipped 
with a 100-µm mesh filter cup to recover sloughed glo-
chidia or metamorphosed juveniles released from the 
fish. Contents of the filter cups were examined one day 
after inoculation and every second day thereafter. Im-
mediately prior to examining filter cups, water velocity 
in the tanks was increased for 15 min to flush glochidia 
and juveniles from the bottom of the tanks into the cups. 
The bottom of the large communal Threadfin Shad tank 
was siphoned daily through a large filter (20-cm diam-
eter) equipped with 100-µm mesh to recover sloughed 
glochidia or metamorphosed juveniles. Contents of the 
filters were then rinsed into Bogorov trays and glochidia 
and juveniles were counted under a stereomicroscope. 
An individual fish was removed from a trial if three con-
secutive observations revealed no glochidia or juveniles, 
but prior to removal, the individual’s gills were examined 
to insure that no encysted glochidia remained. The num-
ber of glochidia that attached to each fish during inocu-
lation was estimated as the sum of sloughed glochidia 
and metamorphosed juveniles recovered throughout 
the duration of each trial. Percent metamorphosis (%M) 
for each individual fish was calculated by dividing the  
number of juveniles by the sum of glochidia and juve-
niles recovered from that fish. 

Water temperature, dissolved oxygen (DO), and pH 
in the holding systems were measured daily with a Hy-
drolab Quanta (Hach Hydromet, Loveland, Colorado). 
Ammonia concentrations were monitored weekly using 
a LaMotte colorimeter (LaMotte Co., Chestertown, Mary-
land). Water chemistry parameters were maintained 
within suitable levels for aquatic organisms throughout 
all trials (DO=7.6-8.4 mg L-1, pH=6.8-7.8, total ammo-
nia= <0.1 mg L-1). All fishes survived the host trials for all 
four mussel species.
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TABLE 1
Fish species tested as potential hosts for Pleurobema pyriforme. HR denotes hatchery reared species; all other species 

were field collected. %M is the mean percent metamorphosis across all individual fishes of a species (N). Female mussels were 
collected from Sawhatchee Creek, Early County, Georgia, May 2011. Water temperature ranged from 22-23° C during the trial. 
The dashed line (─) indicates a non-host species (i.e., metamorphosis = 0%).

RESULTS
Nineteen fish species in five families were tested as 

potential hosts for P. pyriforme. Metamorphosis was ob-
served on six minnow species (Cyprinidae): Cyprinella 
venusta, Nocomis leptocephalus, Notropis amplamala, 
N. lutipinnis, Pimephales promelas and Semotilus atro-
maculatus (Table 1). Cyprinella venusta and Semotilus 
atromaculatus had the highest metamorphosis success 
at 58.3% and 52.7%, respectively, but metamorphosis 
was relatively high on all suitable hosts and confidence 

intervals overlapped broadly among species. The only 
minnow species that produced no juvenile metamorpho-
sis was Notropis texanus. The glochidia of P. pyriforme 
were released as fragile pink conglutinates, similar to 
those described for other Pleurobema (e.g., Hove & 
Neves, 1994; Haag & Warren, 1997). 

Twenty-four fish species in seven families were 
tested as potential hosts for M. penicillatus. Metamor-
phosis was observed on all four darter species (Perci-

 
 

 

  Fish species N 
Days to metamorphosis (hosts) 

or rejection (non-hosts) %M ± 95% CI 
Cyprinidae 

   
 

Cyprinella venusta 5 11-21 58.3 ± 13.2 

 
Nocomis leptocephalus 5 11-21 38.0 ± 11.7 

 
Notropis amplamala 4 13-24 38.5 ± 22.1 

 
Notropis lutipinnis 5 11-21 27.7 ± 21.6 

 
Notropis texanus 1 5 ─ 

 
Pimephales promelas (HR) 2 11-21    38.5 ± 7.8 

 
Semotilus atromaculatus 1 13-21    52.7 

Catostomidae 
   

 
Hypentelium nigricans 1 3 ─ 

Ictaluridae 
   

 
Ameiurus brunneus 1 3 ─ 

 
Ameiurus natalis 1 3 ─ 

 
Ictalurus punctatus 4 3 ─ 

Centrarchidae 
   

 
Lepomis auritus 1 3 ─ 

 
Lepomis cyanellus 4 3 ─ 

 
Lepomis macrochirus 4 3 ─ 

 
Lepomis punctatus 2 3 ─ 

 
Micropterus salmoides (HR) 5 3 ─ 

Percidae 
   

 
Etheostoma inscriptum 6 3 ─ 

 
Percina crypta 2 3 ─ 

  Percina nigrofasciata 3 3 ─ 
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dae) tested: Etheostoma inscriptum, E. swaini, Percina 
crypta, and P. nigrofasciata (Table 2) Metamorphosis 
success was highly variable among darter species and 
between the two trials. Mean metamorphosis success 
on Percina nigrofasciata was only 19.7% in trial A (fe-
male mussels collected in May 2011) but 58.5% in trial 
B (female mussels collected in January 2012). Overall, 

metamorphosis success was highest on Percina nigro-
fasciata (39.1%; mean of both trials) and Etheostoma 
inscriptum (39.9%), and it was low on the other two 
darter species (mean metamorphosis: 2.5-7.9%). Two 
Ichthyomyzon gagei carried glochidia for 12 days after 
inoculation but no juveniles were recovered.

TABLE 2
Fish species tested as potential hosts for Medionidus penicillatus. HR denotes hatchery reared species; all other species 

were field collected. %M is the mean percent metamorphosis across all individual fishes of a species (N). Female mussels were 
collected from Sawhatchee Creek, Early County, Georgia, May 2011 (Trial A), and January 2012 (Trial B). Water temperature 
ranged from 19-20° C during Trial A, and 22-23° C during Trial B.

            N         _ 
Days to metamorphosis (hosts) 

or rejection (non-hosts)    %M ± 95% CI   

  Fish species A B A B A B 
Petromyzontidae 

      
 

Ichthyomyzon gagei ─ 2 ─ 12 
  Anguillidae 

      
 

Anguilla rostrata ─ 1 ─ 1 
  Cyprinidae 

      
 

Cyprinella trichroistia ─ 4 ─ 9 
  

 
Cyprinella venusta 4 ─ 3 ─ 

  
 

Nocomis leptocephalus 4 ─ 3 ─ 
  

 
Notropis amplamala ─ 4 ─ 5 

  
 

Notropis chalybaeus ─ 4 ─ 3 
  

 
Notropis lutipinnis 4 ─ 3 ─ 

  
 

Pimephales promelas (HR) 2 ─ 3 ─ 
  

 
Semotilus atromaculatus 2 ─ 3 ─ 

  Ictaluridae 
      

 
Ameiurus brunneus 1 ─ 3 ─ 

  
 

Ameiurus natalis 2 ─ 3 ─ 
  

 
Ictalurus punctatus 4 ─ 3 ─ 

  
 

Noturus leptacanthus  ─ 2 ─ 3 
  Aphredoderidae 

      
 

Aphredoderus sayanus ─ 3 ─ 6 
  Centrarchidae 

      
 

Lepomis auritus 3 ─ 5 ─ 
  

 
Lepomis cyanellus 4 ─ 3 ─ 

  
 

Lepomis macrochirus 4 ─ 5 ─ 
  

 
Lepomis punctatus 2 ─ 3 ─ 

  
 

Micropterus salmoides (HR) 4 ─ 5 ─ 
  Percidae 

      
 

Etheostoma inscriptum 4 ─ 20-30 ─ 39.9 ± 5.7 ─ 

 
Etheostoma swaini ─ 3 ─ 15-24 ─   2.5 ± 4.9 

 
Percina crypta 5 ─ 23-30 ─   7.9 ± 12.8 ─ 

  Percina nigrofasciata 3 5 20-28 13-29 19.7 ± 16.4 58.5 ± 7.8 
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Twenty-six fish species in eight families were tested 
as potential hosts for H. subangulata. Metamorphosis 
was observed on all three species of black bass (Cen-
trachidae) tested: Micropterus cataractae, M. coosae, 
and M. salmoides (Table 3). Metamorphosis success 
was consistently high on all three species (78-88%). 

Lepomis cyanellus and L. gulosus carried glochidia for 
12 days after inoculation but no juveniles were recov-
ered from either species.

Twenty-seven fish species in nine families were 
tested as potential hosts for A. neislerii. Metamorphosis 

             N        _ 
Days to metamorphosis (hosts) 

or rejection (non-hosts) %M ± 95% CI 
  Fish species A B A B A B 
Acipenseridae 

      
 

Acipenser brevirostrum (HR) 2 ─ 3 ─ 
  

 
Acipenser fulvescens (HR) 2 ─ 3 ─ 

  
 

Acipenser oxyrinchus 2 ─ 3 ─ 
  Esocidae 

      
 

Esox niger ─ 1 ─ 3 
  Cyprinidae 

      
 

Cyprinella venusta 4 ─ 3 ─ 
  

 
Hybopsis rubrifrons 2 ─ 1 ─ 

  
 

Nocomis leptocephalus 4 ─ 1 ─ 
  

 
Notropis lutipinnis 4 ─ 3 ─ 

  
 

Pimephales promelas (HR) 4 ─ 3 ─ 
  

 
Semotilus atromaculatus 4 ─ 5 ─ 

  Catostomidae 
      

 
Hypentelium nigricans 2 ─ 3 ─ 

  
 

Minytrema melanops ─ 1 ─ 3 
  Ictaluridae 

      
 

Ameiurus brunneus 2 ─ 3 ─ 
  

 
Ameiurus natalis 2 ─ 3 ─ 

  
 

Ictalurus punctatus 6 ─ 3 ─ 
  

 
Noturus leptacanthus 2 ─ 1 ─ 

  
 

Aphredoderus sayanus ─ 3 ─ 3 
  Centrarchidae 

      
 

Lepomis auritus 9 ─ 5 ─ 
  

 
Lepomis cyanellus 6 ─ 12 ─ 

  
 

Lepomis gulosus ─ 5 ─ 12 
  

 
Lepomis macrochirus 7 ─ 8 ─ 

  
 

Micropterus cataractae ─ 2 ─ 17-35 ─   82.7 ± 3.3 

 
Micropterus coosae ─ 4 ─ 12-21 ─   87.7 ± 3.2 

 
Micropterus salmoides (HR) 9 1 16-30 19-35 78.2 ± 4.6   85.6 

Percidae 
      

 
Etheostoma inscriptum 4 ─ 3 ─ 

    Percina nigrofasciata 2 ─ 3 ─     

TABLE 3
Fish species tested as potential hosts for Hamiota subangulata. HR denotes hatchery reared species; all other species 

were field collected. %M is the mean percent metamorphosis across all individual fishes of a species (N). Female mussels were 
collected from Spring Creek, Miller County, Georgia, October 2010 (Trial A), and May 2011 (Trial B). Water temperature ranged 
from 19-21° C for both trials.
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was observed on 23 species in seven families (Table 
4). Metamorphosis success was variable both among 

and within families. Metamorphosis success was con-
sistently high only on darters (Etheostoma fusiforme, E. 

TABLE 4
Fish species tested as potential hosts for Amblema neislerii. HR denotes hatchery reared species; all other species were 

field collected. %M is the mean percent metamorphosis across all individual fishes of a species (N). Females were collected from 
the Apalachicola River, Gulf County, Florida, May 2012. Water temperature ranged from 22-23° C during the trial. The dashed 
line (─) indicates a non-host species (i.e., metamorphosis = 0%). The asterisk (*) indicates that fish were held in a communal 
tank rather than individually, which precludes estimation of individual variability in metamorphosis.

  Fish species N 
Days to metamorphosis (hosts) 

or rejection (non-hosts) %M ± 95% CI 
Clupeidae 

    
 

Dorosoma petenense 12 13-18      6.6* 
Cyprinidae 

    
 

Nocomis leptocephalus 7 10-15 6.7 ± 3.7 

 
Notropis amplamala 4 10-15 2.6 ± 0.7 

 
Notropis lutipinnis 2 10-18 25.3 ± 46.7 

 Notropis texanus 3 10 ─ 

 
Pimephales promelas (HR) 8 10-15 12.6 ± 12.3 

 
Pteronotropis grandipinnis 3 10-18 46.2 ± 15.2 

Ictaluridae 
    

 
Ameiurus brunneus 4 10-13 1.3 ± 2.3 

 
Ameiurus melas 1 10-13      1.9 

 
Ameiurus natalis 2 10-13 1.9 ± 1.2 

 
Ictalurus punctatus 1 13-18      0.2 

 
Noturus leptacanthus 1 3 ─ 

Aphredoderidae 
    

 
Aphredoderus sayanus 1 5 ─ 

Poeciliidae 
    

 
Gambusia holbrooki 1 10-13       8.3 

Moronidae 
    

 
Morone saxatilis 9 10-18 28.0 ± 7.6 

Centrarchidae 
    

 
Lepomis auritus 3 10-15   6.2 ± 3.5 

 
Lepomis cyanellus 6 10-18 58.0 ± 7.4 

 
Lepomis gulosus 6 10-18 12.0 ± 7.4 

 
Lepomis macrochirus 2 10-15   9.3 ± 1.9 

 
Lepomis marginatus 1 10-13       7.3 

 
Lepomis megalotis 3 10-18   18.2 ± 23.8 

 
Lepomis punctatus 1 10-13       3.4 

 
Micropterus salmoides (HR) 6 10-15   8.1 ± 3.0 

Percidae 
    

 
Etheostoma fusiforme 2 10-15  42.6 ± 9.1 

 
Etheostoma inscriptum 5 10-18  56.5 ± 9.5 

 
Etheostoma olmstedi 3 10-18  56.1 ± 4.1 

Elassomatidae 
      Elassoma zonatum 1 5 ─ 
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inscriptum, E. olmstedi; 43-57%). Similarly high meta-
morphosis was observed on a minnow (Pteronotropis 
grandipinnis, 46%) and a sunfish (Lepomis cyanellus, 
58%), but metamorphosis success varied widely on  
other species in these families. Metamorphosis was 
consistently weak on catfishes (Ictaluridae, 0.2-1.9%), 
and no juveniles were recovered from a madtom  
(Noturus leptacanthus). Only four out of 27 fish species 
produced no juveniles. The mature glochidia of A. neis-
lerii were released in a loose mucous matrix similar to 
that reported by O’Brien and Williams (2002).

DISCUSSION
Three of the mussel species in our study appear 

to be host specialists, and patterns of host use in these 
species were in close agreement with previous informa-
tion about these species or related species. A single 
minnow species (Pteronotropis hypselopterus) was pre-
viously identified as a suitable host for P. pyriforme, but 
four additional minnow species were unsuitable (O’Brien 
and Williams, 2002). All other species of Pleurobema for 
which host use is known are specialists on minnows to 
varying extents (e.g., Yokley, 1972; Weaver et al., 1991; 
Hove & Neves, 1994; Hove et al., 1997; Haag & Warren, 
1997, 2003; Layzer et al., 2003; White et al., 2008; Culp 
et al., 2009). However, specialists on minnows may use 
either a broad array of minnow species (e.g., Fuscona-
ia cerina, Pleurobema collina, P. oviforme, Theliderma 
metanevra; Weaver et al., 1991; Hove & Neves, 1994; 
Haag & Warren, 2003; Fritts et al., 2012b) or only one or 
a few closely related species (e.g., F. burkei, P. decisum, 
P. strodeanum, T. intermedia; Yeager & Saylor, 1995; 
Haag & Warren, 2003; White et al., 2008). Pleurobe-
ma pyriforme clearly is a member of the former group 
based on its ability to metamorphose robustly on an  
array of minnow species. Another feature shared by many  
minnow specialists, regardless of the breadth of host use, 
is robust metamorphosis on Cyprinella (Haag & Warren, 
1997, 2003; White et al., 2008; Fritts et al. 2012b), and 
this feature is shared by P. pyriforme. Although other 
minnow species also facilitated robust metamorphosis, 
Cyprinella venusta or Semotilus atromaculatus are good 
candidates for use in captive propagation because they 
are abundant, widely distributed, and easily procured.

Percina nigrofasciata and another darter species, 
Etheostoma edwini, were previously identified as hosts 
for M. penicillatus (O’Brien & Williams, 2002), and to-
gether with our results this shows that this species is a 
specialist on a broad array of darter species similar to 
other Medionidus (Zale & Neves, 1982; Haag & Warren, 
1997, 2003). Percina nigrofasciata is a good candidate 
for use in propagation because it is widely distributed 
and abundant throughout the Gulf Coastal Plain. Our 

finding of specialization on black basses by H. subangu-
lata also is concordant with previous information about 
this species and other members of Hamiota (Haag & 
Warren, 1997; Haag et al., 1999; O’Brien & Brim Box, 
1999). Hamiota altilis was also reported to use Lepo-
mis cyanellus as a host, but this species was consid-
ered only marginally suitable because metamorphosis 
was low and variable among trials (Haag et al., 1999). 
We did not recover any juvenile H. subangulata from L. 
cyanellus, but that species and L. gulosus held glochidia 
for 12 days after inoculation, suggesting that metamor-
phosis may be possible on this species. Micropterus 
salmoides is a good candidate for use in propagation of 
H. subangulata because this species is readily available 
from hatcheries, and we found no difference in meta-
morphosis success on hatchery raised M. salmoides 
and wild individuals of other Micropterus species. 

We confirmed that Amblema neislerii is a host gen-
eralist. A previous study reported metamorphosis of this 
species on five fish species in three families (O’Brien & 
Williams, 2002), but our results provide a clearer picture 
of the wide host breadth of this species. In addition, we 
observed metamorphosis on one species (Gambusia 
holbrooki) not considered a host by O’Brien and Wil-
liams (2002), but that study observed metamorphosis 
on Notropis texanus, which did not produce juveniles in 
our study. These results show that A. neislerii is capable 
of metamorphosing on many fishes, but considerable 
variation in host suitability exists among fish species. 
Metamorphosis success was consistently high only on 
darters, and these fishes are good candidates for use in 
propagation of A. neislerii. Because A. neislerii releases  
glochidia in mucus threads that apparently entangle  
fishes by chance, the benthic habits of darters may  
expose them to glochidia more frequently, which in turn 
may have resulted in the close relationship between 
these species. However, another group of benthic fishes, 
catfishes, were consistently poor hosts for A. neislerii. 

Apart from the tribe Anodontini, generalist host use 
is poorly documented and appears to be rare in North 
American mussel species (Haag, 2012), and confirma-
tion of this host strategy has several important implica-
tions. Because it can metamorphose on many fish spe-
cies, A. neislerii may be limited by host abundance to 
a lesser extent than specialists. On the other hand, its 
broad host use means that it could compete for hosts 
with many other mussel species. Finally, the ability of A. 
neislerii to metamorphose robustly on the migratory Mo-
rone saxatilis suggests that population structure may be 
influenced by long distance dispersal to a greater extent 
than mussel species that are specialists on more seden-
tary fish species. Studies of the suitability of other migra-
tory species such as sturgeons, Skipjack Herring (Alosa 
chrysochloris), and Alabama Shad (Alosa alabamae) 



also would be desirable. Amblema plicata also has been 
reported to parasitize fishes from 10 different families 
(Howard & Anson, 1922; Coker et al., 1921; Weiss & 
Layzer, 1995), but most of these potential hosts are un-
confirmed, and remarkably, a comprehensive, quantita-
tive host suitability study has never been conducted for 
this species. Amblema plicata is one of the most abun-
dant and widespread species in North America, and 
better information is needed to more fully evaluate the 
evolutionary and conservation significance of host use 
in this genus. 

The unique life cycle of freshwater mussels com-
plicates the protection of these species because man-
agers must consider the status not only of mussels but 
of host fish populations (McCargo & Peterson, 2010). 
All four species in this study use common fishes as 
hosts and therefore may have been affected by chang-
es in fish populations to a lesser extent than mussel  
species that are specialists on imperiled fishes (e.g., Fritts  
et al., 2012a). Nevertheless, comprehensive host infor-
mation is necessary for development of holistic manage-
ment strategies, and these studies remain an important  
research need for mussel conservation (Haag &  
Williams, 2014). 
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ABSTRACT
Most freshwater mussel species in the Great Lakes colonized the region from the Mississippi River basin and 

few appear to have colonized from Atlantic coast rivers. The Eastern Pondmussel, Ligumia nasuta, is widespread  
along the Atlantic coast but occurs elsewhere only in the Great Lakes, suggesting that it is one of the few Great 
Lakes species of Atlantic origin. Great Lakes populations are now imperiled following invasion of the lakes by  
dreissenid mussels. We examined patterns of diversity in the mitochondrial CO1 and ND1 genes in L. nasuta  
populations in the Great Lakes and in Atlantic coast rivers. Genetic diversity was low in Great Lakes populations and 
included only one CO1 and two ND1 haplotypes, all of which were also found in Atlantic coast populations. Genetic  
diversity was higher in Atlantic coast populations and included four CO1 and six ND1 haplotypes. Pairwise  
ФST revealed significant genetic differentiation for both genes between Atlantic coast and Great Lakes populations 
but not within Great Lakes populations. These results suggest that all populations of L. nasuta in the Great Lakes 
are derived from a single, small founder group that colonized from an Atlantic coast river. As such, Great Lakes 
populations may be considered a single management unit and conservation efforts based on propagation or trans-
location should be limited to use of Great Lakes source stock to prevent introduction of non-native haplotypes. 

KEY WORDS Endangered mussels, genetic variation, Laurentian Great Lakes, phylogeography, glaciation,  
Atlantic coast

INTRODUCTION
The diverse mussel fauna of the Laurentian Great 

Lakes upstream of Niagara Falls (referred to here as the 
upper Great Lakes) is a result of dispersal into the re-
gion following the end of the Wisconsin glaciation about 
11,000 years ago. Most species (about 40) colonized the 
region from the Mississippi River basin (van der Schalie, 
1963; Graf, 2002) and genetic evidence suggests that 
there were multiple colonization routes (Elderkin et al., 
2007, 2008). Only two species are thought to have colo-
nized the region from Atlantic coast river systems: the 
Eastern Pondmussel, Ligumia nasuta (Say, 1817) and 
Eastern Elliptio, Elliptio complanata (Lightfoot, 1786). 
The dearth of Atlantic coast species is a result of the 
long-standing barrier of Niagara Falls and the limited 
number of post-glacial colonization routes between 
Atlantic coast rivers and the upper Great Lakes (Man-

drak & Crossman, 1992; Strayer & Jirka, 1997; Larson 
& Schaetzl, 2001; Lewis et al., 2012). In contrast, Lake 
Ontario and the St. Lawrence River system downstream 
of Niagara Falls have a higher proportion of Atlantic 
coast mussel species, suggesting that this region has 
had more exchange with other Atlantic coast rivers 
(Haag, 2012).  

Ligumia nasuta is widely distributed in Atlantic 
coast rivers from South Carolina to Maine (Nedeau et al., 
2000; Price, 2005). In the upper Great Lakes, L. nasuta 
was locally common but restricted mainly to the Lake 
Erie and Lake St. Clair watersheds and a small portion 
of the Lake Huron and Lake Michigan watersheds, and 
it was widely distributed downstream of Niagara Falls 
(COSEWIC, 2007; Watters et al., 2009). The distribu-
tion and abundance of L. nasuta in the Great Lakes 
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was greatly reduced after introduction of invasive dreis-
senid mussels (Dreissena spp.) (Nalepa et al., 1991; 
Schloesser et al., 1996; Zanatta et al., in press), and the 
species is in danger of extirpation from the region. Be-
cause it remains widely distributed in Atlantic coast riv-
ers, L. nasuta is considered “apparently secure” globally 
(NatureServe, 2013). However, the genetic relationship 
of surviving Great Lakes populations to those on the At-
lantic coast is unknown. 

We examined DNA sequence variation in the mito-
chondrial COI and ND1 genes in populations of L. nasuta  
in the Great Lakes and Atlantic coast rivers. We use these  

data to 1) examine the colonization history of the species 
in the Great Lakes, and 2) provide information neces-
sary for management and conservation of the species.  

METHODS
A total of 64 individuals were collected in 2011 and 

2012 from 17 sites within five major watersheds or geo-
graphical regions: northern Michigan (Lake Michigan 
and Huron drainages), Lake St. Clair, Lake Erie, Lake 
Ontario (including the St. Lawrence River system), and 
Atlantic coast rivers (Fig. 1; Table 1). Mussels were col-

FIGURE 1
Sampling sites and haplotype frequencies for L. nasuta. The size of circles (CO1) and rectangles (ND1) indicates the rela-

tive sample sizes (number of individuals) for each gene. CO1 haplotype circles are centered over the sampling location area they 
represent. Note that CO1 and ND1 mtDNA sequences were not resolved at some sites and these sites lack the corresponding 
symbol. Some closely adjacent sample sites are represented by a single symbol representing pooled results for those sites (e.g., 
Presque Isle); Table 1 provides a complete list of sample sites
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TABLE 1
Sampling sites for Ligumia nasuta. Sites were pooled by region for statistical analysis (see text). Sites were pooled by 

population for depiction of haplotype frequencies on Fig. 1.Table 1.  Sampling sites for Ligumia nasuta.  Sites were pooled by region for statistical analysis 1	  
(see text).  Sites were pooled by population for depiction of haplotype frequencies on Fig. 1. 2	  
Region Population Site 
Northern Michigan Douglas Lake and Paradise 

Lake 
Douglas Lake, Cheboygan 
Co., Michigan 

  Paradise Lake, Emmet and 
Cheboygan Co., Michigan 
 

Lake St. Clair Lake St. Clair Big Muscamoot Bay, St. Clair 
Co., Michigan 

  Goose Bay, St. Clair Co., 
Michigan 

  Little Muscamoot Bay, St. 
Clair Co., Michigan 

  Bass Bay, Walpole Island 
First Nation, Ontario, Canada 
 

Lake Erie Cuyahoga River Cuyahoga River, Geauga Co., 
Portage Co., Ohio 

 Presque Isle Thompson Bay, Erie Co., 
Pennsylvania 

  Presque Isle Bay, Erie Co., 
Pennsylvania 

  Duck Pond, Erie Co., 
Pennsylvania 

 Spicer Creek (Niagara River) Spicer Creek, Grand Island, 
Erie Co., New York 
 

Lake Ontario Lynde Creek (Lake Ontario) Lynde Creek, Durham Region, 
Ontario, Canada 

 Lyn Creek (St. Lawrence 
River) 

Lyn Creek, Leeds and 
Grenville Co., Ontario, 
Canada 
 

Atlantic coast Willow Grove Lake (Maurice 
River) 

Willow Grove Lake, Salem 
Co., New Jersey 

 Potomac River Potomac River, Montgomery 
Co., Maryland 

 Nottaway and Blackwater 
rivers 

Nottaway River, Southampton 
Co., Virginia 

  Blackwater River, Franklin, 
Virginia 

 3	  
 4	  
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lected with clam rakes or by hand with SCUBA and snor-
keling. Two methods were used to collect DNA: a swab 
of mucus from the foot, which was stored in sterile lysis 
buffer (Henley et al., 2006); or a clip of mantle tissue 
stored in 95% ethanol (Berg et al., 1995). The collection 
method depended on permit restrictions for rare species  
in each state or province. Each mussel was gently 
opened along the ventral margin <1 cm to obtain the 
sample, after which the mussel was returned to the  
substrate. All samples were stored at -20°C in the 
laboratory. Only female lineage mtDNA was sampled  
because methods required to obtain gonadal tissue  
for male lineage mtDNA are typically lethal.

 DNA was extracted from samples using an  
overnight digestion with proteinase K. The alcohol  
extraction method of Sambrook et al. (1989) was used 
for mucus samples and Qiagen DNeasy extraction kits 
were used for mantle clips. Genomic DNA was stained 
with SYBR Green (or Ethidium Bromide) and electro-
phoresed in a 1.5% agarose gel to confirm presence. 
Two mtDNA regions were amplified, the mitochondrial  
cytochrome c oxidase subunit 1 (CO1) and the NADH 
dehydrogenase subunit 1 (ND1) using primers described 
in Campbell et al. (2005). Samples from the Cuyahoga 
River were run at Cleveland State University in 25 µL 
volumes consisting of 10 µL of deionized water, 5.5 µL 
of a 5X buffer, 2.75 µL of 2.5 mM dNTPs, 2.75 µL of 
each primer at 2.5 mM, 2.75 µL of 0.25 mM MgCl2, and 
0.15 µL Taq polymerase. All other samples were run at  
Central Michigan University in 10 µL volumes, made 
of the mixture of 1 µL 10X Buffer, 1 µL bovine serum  
albumin, 0.3 µL of forward primer, 0.3 of reverse primer,  
0.2 µL of dNTP, 5.15 µL of deionized water, and  
0.05 µL Taq polymerase per sample. To each assay 1 µL  
extracted DNA was added. If the initial PCR reaction 
did not work, an additional 0.2 µL of MgCl2 replaced an 
equal amount of water. The thermocycler amplification  
conditions for both mtDNA regions were as follows:  
denaturation at 92-94°C for 2 minutes; five cycles of  
92-94°C for 40 seconds; 40°C for 40 seconds; 72°C for 
90 seconds; 25 cycles of 92°C for 40 seconds; 50°C 
for 40 seconds (or 49°C for all cycles), and 72°C for 
90 seconds. Completed reactions were held at 4°C 
and then placed in the freezer. Primers were removed 
from amplified samples using a QIAquick© PCR Purifi-
cation Kit or an Exonuclease I (Amersham Biosciences 
cat# E70073X, 10 U.ml) and shrimp alkaline phospha-
tase (SAP) (Amersham Biosciences cat# E70092X 
1U.ml) (78 ml ddH2O, 2 ml ExoI, 20 ml SAP) reaction 
to denature enzymes, and incubation at 37oC for 40 min  
followed by 80oC for 20 min. Amplified samples were  
sequenced on an ABI 3730 (Applied Biosystems). 

The sequences of the two mtDNA regions were  
aligned and edited using BIOEDIT (Hall, 1999) and MAC-

CLADE (Maddison and Maddison, 1997) software. Hap-
lotypes were identified using COLLAPSE v.1.2 software  
(Posada 2011). A haplotype network for both mtDNA 
regions was constructed using TCS v.1.21 software 
(Clement et al., 2000). Due to limited sample sizes at 
many sites, we pooled sites within the five watersheds or 
geographical regions described previously (see Table 1)  
to examine large-scale patterns of genetic diversity. Dif-
ferences among these regions in haplotype differentiation  
(ФST), gene diversity, nucleotide diversity, and the number  
of haplotypes per group were examined using analysis 
of molecular variance (AMOVA) implemented in ARLE-
QUIN (Schneider et al., 2000). CO1 and ND1 mtDNA 
sections were analyzed separately because sequencing 
was not successful for both genes in all individuals. 

RESULTS
The CO1 sequencing provided a 453 bp fragment 

from 64 individuals and the ND1 sequencing gave a 511 
bp fragment from 61 individuals (Genbank Accession 
numbers KM656075-KM656083). Both mtDNA gene 
segments exhibited little variation within the Great Lakes 
including Lake Ontario and the St. Lawrence River. 
Only one CO1 haplotype and two ND1 haplotypes were 
found in these populations (Fig. 1; Table 2). In contrast, 
four CO1 and six ND1 haplotypes were recovered in  
Atlantic coast populations. All Great Lakes haplotypes 
were present in and among the most common haplo-
types in Atlantic coast populations even though sample 
numbers were generally low across all of the Atlantic 
coast populations sampled. All haplotypes in all regions 
differed by just one or two point mutations from the most 
common type (Fig. 2). Gene diversity and nucleotide  
diversity for both genes also were low in Great Lakes 
populations; CO1 was invariant and ND1 showed 
very low diversity except in Lake Ontario where it was  
invariant (Table 2). Gene diversity and nucleotide diver-
sity for both genes were substantially higher in Atlantic 
coast populations than in the Great Lakes (Table 2).    

The percentage of variation explained by partitioning  
among the five regions was 38% (P < 0.0001) for CO1 
and 10% for ND1 (P = 0.0128), and more variation was 
present within Atlantic coast populations than within 
all of the Great Lakes samples combined (Table 2).  
Pairwise ФST revealed significant genetic differentiation 
for both genes only between the Atlantic coast popula-
tions and each of the four Great Lakes regions and there 
were no differences within the Great Lakes (Table 3).

DISCUSSION
Genetic variation in Ligumia nasuta was low in all 

Great Lakes populations compared to Atlantic coast 



TABLE 2
Variation in the mitochondrial CO1 and ND1 genes of Ligumia nasuta among five regions. N is the number of individuals sampled.
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FIGURE 2
Spanning network of mtDNA haplotypes at the CO1 and ND1 loci for L. nasuta. The connecting lines represent a single 

base pair difference between adjoined haplotypes. The relative size of the circles represents the frequency of the haplotypes in 
all samples. Haplotype numbers are referenced on Fig. 1.

Table 2. Variation in the mitochondrial CO1 and ND1 genes of Ligumia nasuta among five 1	  
regions.  N is the number of individuals sampled.   2	  

Region CO1 

N Gene Diversity Nucleotide Diversity No. of Haplotypes 

Northern Michigan 12 0.0000 0.0000 1 
Lake St. Clair 14 0.0000 0.0000 1 
Lake Erie 21 0.0000 0.0000 1 
Lake Ontario 7 0.0000 0.0000 1 
Atlantic coast 9 0.7778 0.0030 4 
 ND1 
Northern Michigan 12 0.1667 0.0003 2 
Lake St. Clair 15 0.4190 0.0008 2 
Lake Erie 17 0.3824 0.0007 2 
Lake Ontario 7 0.0000 0.0000 1 
Atlantic coast 10 0.8889 0.0023 6 
 3	  



Page 65WALKERANA, 17(2): Pages 60-67, 2014
©Freshwater Mollusk Conservation Society (FMCS)

populations where limited sampling revealed numer-
ous haplotypes and much higher overall genetic diver-
sity. Together with the common occurrence of all Great 
Lakes haplotypes in Atlantic coast populations, these re-
sults suggest that Great Lakes populations were estab-
lished by a single, small founder group from an Atlantic 
coast river system or a larger group from a single source 
population with low genetic variation.  Either scenario is 
consistent with the hypotheses that 1) L. nasuta is one 
of the few upper Great Lakes species to have colonized 
the region from Atlantic coast rivers, and 2) there were 
few opportunities for such exchanges.  An unexpected 
result was the low genetic diversity of Great Lake popu-
lations downstream of Niagara Falls.  Our sample sizes 
were lowest in this region, but these results suggest 
that there also have been few opportunities for faunal 
exchange between the St. Lawrence River system and 
other Atlantic coast river systems. 

The low genetic diversity of Great Lakes popula-
tions of L. nasuta is in contrast to other species that 
colonized the region from the Mississippi River basin. In 
the Lake Erie watershed alone, Amblema plicata (Say, 
1817) had at least six CO1 haplotypes out of 36 known 
haplotypes across its range (Elderkin et al., 2007), and 
Pyganodon grandis (Say, 1829) had 34 CO1 haplotypes 
out of 45 haplotypes across the northern portion of its 
range (Krebs et al., in press). Across the Great Lakes 
region, Elliptio dilatata (Rafinesque, 1820) had four to 
seven haplotypes per site out of 38 haplotypes across 
its range, and Actinonaias ligamentina (Lamarck, 1819) 
had six to eleven haplotypes per site out of 73 haplo-
types across its range (Elderkin et al., 2008). These  
results are consistent with the idea that some Missis-
sippi River basin species reached the Great Lakes via 
multiple routes.

Other Mississippian species in the Great Lakes 
have lower genetic diversity comparable to that seen 

in L. nasuta. Fusconaia flava (Rafinesque, 1820),  
had only three CO1 haplotypes in the Lake Erie  
watershed compared to 13 found across its range 
(Burdick & White, 2007), and Epioblasma torulosa  
rangiana (Lea, 1839) in the Sydenham River (Lake St. 
Clair watershed) had two CO1 haplotypes out of 10 
haplotypes found across its range (Zanatta & Murphy, 
2007). Venustaconcha ellipsiformis (Conrad, 1836) in 
the Lake Huron and Lake Michigan watersheds had 
three CO1 haplotypes and one ND1 haplotype out of 13 
haplotypes found in the Mississippi River basin (Zanatta  
& Harris, 2013). These mixed results highlight the  
diverse and complex history of post-glacial dispersal 
into the Great Lakes from the Mississippi River basin 
(see Graf, 2002) as opposed to the apparently more  
limited dispersal from Atlantic coast rivers.

The genetic similarity among L. nasuta popula-
tions throughout the Great Lakes suggests that they  
can be treated as a single management unit. However, 
the Great Lakes management unit clearly is genetically  
distinctive from the Atlantic coast populations we  
sampled. Until more information becomes available,  
recovery efforts in the Great Lakes based on  
captive propagation or translocation should be limited 
to use of Great Lakes source stock to avoid introduction 
of non-native haplotypes. Sampling from populations 
in additional Atlantic coast rivers, particularly those in  
previously glaciated regions (e.g., Hudson and Mohawk 
rivers), may reveal other suitable source populations for 
conservation efforts and may refine our understanding 
of the evolutionary history of Great Lakes populations 
of L. nasuta.   
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