POPULATION PERFORMANCE CRITERIA TO EVALUATE REINTRODUCTION AND RECOVERY OF TWO ENDANGERED MUSSEL SPECIES, *EPIOBLASMA BREVIDENS* AND *EPIOBLASMA CAPSAEFORMIS* (BIVALVIA: UNIONIDAE) Jess W. Jones U.S. Fish and Wildlife Service, Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 U.S.A. phone: (540) 231-2266; email: Jess_Jones@fws.gov Richard J. Neves & Eric M. Hallerman Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 U.S.A. ## **ABSTRACT** Genetic and demographic modeling of two endangered mussel species, *Epioblasma brevidens* and *E. capsaeformis*, in the Clinch River, U.S.A., was conducted to determine quantitative criteria to evaluate performance of extant and reintroduced populations. Reintroduction modeling indicated that the initial population size created during a 5 y build-up phase greatly affected final population size at 25 y, being similar to the population size at the end of the build-up phase, especially when expected population growth rate was low (e.g., 1-2%). Excluding age-0 individuals, age-1 juveniles or recruits on average comprised approximately 11% and 15% of a stable population of each species, respectively. Age-class distribution of a stable or growing population was characterized by multiple cohorts, including juvenile recruits, sub-adults, and adults. Molecular genetic and demographic data indicated that the ratio of *Ne/Nc* was ~5% for both species. Based on this ratio and predicted declines of genetic variation at different population sizes, target total sizes for reintroduced or recovered populations of each species should be \geq 10,000 individuals (*Ne*=500), respectively, and ideally should be comprised of multiple smaller demes spread throughout a river. Because of current barriers to dispersal and the low dispersal capability of some mussel species, reintroductions will play a prominent role in restoring populations in the United States. **KEY WORDS** Freshwater mussels, Endangered species, *Epioblasma brevidens*, *Epioblasma capsaeformis*, Genetic and demographic modeling, Population performance criteria