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Abstract: Natural ecosystems provide essential services to people including food, water, climate
regulation, and aesthetic experiences being among many that have been coined as
ecosystem services. Natural communities of organisms can help provide these
services to people in direct and indirect ways and a large body of work has shown that
biodiversity can enhance and stabilize ecosystem functioning and resulting services.
Freshwater mollusks are a diverse group that play many important roles in providing
ecosystem services through their diversity of feeding habits (e.g., filter-feeding,
grazing), their bottom-up effects on food webs, provision of habitat, usage as a food
resource by people, and their overall cultural importance. Future research focused on
quantifying the direct and indirect ways mollusks influence ecosystem services may
help inform the public and policy-makers on the value of mollusk communities to
society. The Freshwater Mollusk Conservation Society highlighted the need to evaluate
mollusk ecosystem services in their 2016 Strategy and while significant progress has
been made, considerable work remains across the research, management, and
outreach community. Here we briefly review the global status of native freshwater
mollusks, the current state of knowledge regarding their ecosystem services, and
highlight recent advances and knowledge gaps to guide further work describing and
quantifying the role of these animals in sustaining ecosystem services. Our intention is
to provide ecologists, conservationists, economists, and social scientists with
information to improve science-based consideration of the social, ecological, and
economic value of mollusk communities to healthy functioning aquatic systems.
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ABSTRACT 24 

Ecosystems provide essential services to people including food, water, climate 25 

regulation, and aesthetic experiences. Biodiversity can enhance and stabilize ecosystem 26 

function and the resulting services natural systems provide. Freshwater mollusks are a 27 

diverse group that provide a variety of ecosystem services through their feeding habits 28 

(e.g., filter-feeding, grazing), top-down and bottom-up effects on food webs, provisioning of 29 

habitat, use as a food resource by people, and cultural importance. Research focused on 30 

quantifying the direct and indirect ways mollusks influence ecosystem services may help 31 

inform policymakers and the public about the value of mollusk communities to society.  32 

The Freshwater Mollusk Conservation Society highlighted the need to evaluate mollusk 33 

ecosystem services in their 2016 National Strategy for the Conservation of Native 34 

Freshwater Mollusks, and, while significant progress has been made, considerable work 35 

remains across the research, management, and outreach communities. We briefly review 36 

the global status of native freshwater mollusks, assess the current state of knowledge 37 

regarding their ecosystem services, and highlight recent advances and knowledge gaps to 38 

guide further research and conservation actions. Our intention is to provide ecologists, 39 

conservationists, economists, and social scientists with information to improve science-40 

based consideration of the social, ecological, and economic value of mollusk communities to 41 

healthy aquatic systems. 42 

 43 

KEY WORDS - restoration, conservation, social valuation, provisioning, regulating, cultural, 44 

biodiversity 45 

  46 
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INTRODUCTION TO ECOSYSTEM SERVICES 47 

Human societies obtain essential goods and services from natural ecosystems, including 48 

timber, food, water and climate regulation, which are known as “ecosystem services” 49 

(Millennium Ecosystem Assessment 2005; Mace et al. 2012). Ecosystems provide such services 50 

in ways, both direct and indirect, that underpin human well-being. For example, there is value in 51 

a clean river that can be used for human consumption while also providing habitat for fish 52 

communities and a place for people to recreate. Ecosystem services can be divided into four 53 

main categories, each of which can be valuated to draw comparisons with human-engineered 54 

infrastructure and services to inform policy and decision makers (Millennium Ecosystem 55 

Assessment 2005). 56 

1. Provisioning services are those that provide goods such as food and water. 57 

2. Regulating services are those that control various processes, such as water 58 

purification, flood control, climate regulation, or suppression of disease outbreaks. 59 

3. Supporting services are those that maintain material and energy balances, such as 60 

nutrient recycling. 61 

4. Cultural services are those that provide spiritual or aesthetic benefits.  62 

A large body of work shows that higher biodiversity can enhance and stabilize ecosystem 63 

functioning (Tilman et al. 2001; Naeem and Wright 2003; Loreau and de Mazancourt 2013; 64 

Oliver et al. 2015), thus providing critical services. Therefore, biodiversity is considered an 65 

ecosystem service that is subject to valuation (Mace et al. 2012). Human-induced declines in 66 

biodiversity and biomass raise concerns about the deterioration of ecosystem functions and 67 

associated ecosystem services (Dirzo et al. 2014; Young et al. 2016). As such, the ecosystem 68 
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service framework can improve understanding of how the existence of communities of abundant 69 

and diverse organisms enhances ecosystems.  70 

Freshwater ecosystems and the organisms that inhabit them contribute to many important 71 

ecosystem services including provisioning of clean water, nutrient processing, recreation, and 72 

tourism (Brauman et al. 2007; Dodds et al. 2013). Freshwater mollusks (i.e., gastropods and 73 

bivalves) in rivers and lakes provide supporting services such as nutrient recycling and storage, 74 

provisioning services by acting as food for humans and other organisms, regulating services like 75 

water purification, and cultural services such as jewelry and art (FMCS 2016; Vaughn 2018; 76 

Zieritz et al. 2022; Table 1). Due to their ecological importance and potential role in provisioning 77 

ecosystem services, using mollusks to restore or establish desirable ecosystem services has been 78 

proposed (Strayer et al. 2019; Wood et al. 2021). Research that quantifies the direct and indirect 79 

ways mollusks provision ecosystem services is key to properly valuating these services and 80 

informing policymakers and the public about the value of mollusk communities to society 81 

(FMCS 2016). The Freshwater Mollusk Conservation Society identified understanding the role 82 

of freshwater mollusks and their habitats on ecosystem services as a high-priority need (FMCS 83 

2016). Zieritz et al. (2022) recently synthesized knowledge on the services provided by and 84 

disrupted by bivalve mollusks. We expand on this synthesis by including freshwater bivalves and 85 

gastropods and identifying future research needs. We briefly review the status of native 86 

freshwater mollusks, assess the current state of knowledge regarding their ecosystem services, 87 

and highlight recent advances and knowledge gaps to guide further work describing and 88 

quantifying the role of these animals in sustaining ecosystem services. Our intention is to provide 89 

ecologists, conservationists, economists, and social scientists with information to improve 90 
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science-based consideration of the social and economic values of mollusk communities and 91 

functioning aquatic systems. 92 

 93 

FRESHWATER MOLLUSKS–A HIGHLY IMPERILED GROUP OF ORGANISMS 94 

Freshwater mollusks are distributed globally, occurring on all continents except 95 

Antarctica (Graf and Cummings 2007; Strong et al. 2008). They provide valuable ecosystem 96 

services by improving water quality, enhancing nutrient cycling, and playing critical roles in 97 

aquatic food webs. However, biodiversity is declining at a greater rate in freshwaters globally 98 

than in terrestrial systems (Reid et al. 2019), and mollusks represent one of the most diverse 99 

aquatic groups with more than 6,000 species (Böhm et al. 2021). Extinction rates for North 100 

American freshwater fauna are estimated to be as high as 4% per decade, five times greater than 101 

species losses in terrestrial systems (Ricciardi and Rasmussen 1999). For example, of the species 102 

comprising potentially the most diverse freshwater mollusk assemblage in the world (the Mobile 103 

Basin in the southeastern USA), one-third are now extinct due to flow regulation and habitat 104 

alteration (Williams et al. 2008). More broadly, 44% of European (Cuttelod et al. 2011), 29% of 105 

African (Seddon et al. 2011), and 17% of Indo-Burman (Köhler et al. 2012) freshwater mollusks 106 

are threatened with extinction. Rates for less-studied regions and faunas may be as high or higher 107 

(Dudgeon et al. 2006; Böhm et al. 2021). Mollusk populations are extirpated or severely reduced 108 

in many freshwater systems globally due to significant and emerging anthropogenic stressors 109 

including habitat modification (e.g., dams and urbanization) and degraded water quality (Benson 110 

et al. 2021; Böhm et al. 2021). Globally, 40% of freshwater bivalves are considered threatened, 111 

with gastropods likely being more threatened, but this is probably an underestimate given the 112 

lack of data for many regions (Lopes-Lima et al. 2018; Böhm et al. 2021). In North America 113 
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alone, an estimated 72% of freshwater mussels and 74% of freshwater gastropods are imperiled 114 

(Johnson et al. 2013). Therefore, it is critical to understand their role in the functioning of 115 

freshwater ecosystems and the resulting ecological services associated with them. Despite these 116 

and other anthropogenic pressures, some native freshwater mollusk populations remain intact or 117 

are being restored, and ecosystem services are a goal of some restoration efforts (FMCS 2016; 118 

Strayer 2017).  119 

 120 

STATE OF OUR KNOWLEDGE REGARDING FRESHWATER MOLLUSK 121 

ECOSYSTEM SERVICES 122 

 123 

Provisioning Services 124 

Humans have used mollusks for food and as tools for millennia. Evidence of freshwater 125 

mollusks serving as a human food source dates to ~6000 years BP in northern Europe and to 126 

greater than 2800 years BP in North America (Haag 2012; Meadows et al. 2014; CTUIR 2020). 127 

The presence of large shell middens at human habitation sites shows that freshwater mussels 128 

were used as food extensively in prehistory by people in North America, Australia, Europe, and 129 

likely elsewhere (Parmalee and Klippel 1974; Nicodemus 2011; Haag 2012; Garvey 2017). 130 

Columbia Plateau tribes in northwestern North America, such as the Confederated Tribes of the 131 

Umatilla Indian Reservation (CTUIR), historically harvested mussels in association with harvest 132 

of other food resources (e.g., salmon and plants; Quaempts et al. 2018; CTUIR 2020). The 133 

Umatilla named a site on the Columbia River Išáaxuyi, which means “covered with mussel 134 

shells,” due to the high abundance of mussels (Hunn et al. 2015). Freshwater mussels are still 135 

considered a first food, a food of significant cultural and ecological importance, by the CTUIR 136 
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and are actively managed and protected (Quaempts et al. 2018; CTUIR 2020). Freshwater 137 

mollusks remain an important food resource in other parts of the world, especially Southeast 138 

Asia (Zieritz et al. 2018), where both freshwater mussels and gastropods are a common 139 

commodity in markets (Bolotov et al. 2014; Dee et al. 2019). Mollusks are also used for 140 

medicinal purposes, mainly in eastern Asia. For example, in its native range, Corbicula fluminea 141 

has long been a part of traditional Chinese medicine used to treat liver disease and the effects of 142 

alcoholism (Bai et al. 2020).  143 

Historically, mollusk shells were important for tools, jewelry, and other uses. Native 144 

American tribes used mussel shells for tools and ground them to powder to temper pottery 145 

(Rafferty and Peacock 2008). In the Pacific Northwest, tribes collected mussels seasonally, 146 

stored shells in large piles, and later worked them into hooks, spoons, and adornment (Brim Box 147 

et al. 2006; CTUIR 2020; Peacock et al. 2020). Beginning in the mid-1800s and lasting through 148 

the mid-1900s, the mollusk shell button industry was a lucrative business in North America 149 

(Coker et al. 1919; Haag 2012). During the peak harvest in 1912, 50,000 tons of mussels were 150 

removed from North American rivers, and between 1897 and 1963, the total value of buttons was 151 

approximately $6 billion U.S. dollars (Haag 2012; Strayer 2017). Subsequently, the Japanese 152 

pearl industry used beads made from freshwater mussel shells as nuclei to produce cultured 153 

pearls in marine bivalves (Haag 2012). Cultured pearls are also produced in freshwater mussels, 154 

and this is a large industry in Asia (Jiale and Yingsen 2009). Additionally, many freshwater 155 

bivalves and gastropods have been harvested in Thailand for jewelry and artwork (Nagachinta et 156 

al. 2005; Allen et al. 2012). 157 

 158 

Regulating Services 159 
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Water filtration.—Through their filter-feeding and grazing, mollusks provide important 160 

regulating services such as water purification and regulation of algal communities. Freshwater 161 

mussels are filter-feeders that remove particles and associated nutrients from the water column 162 

and interstitial sediments, which can in turn decrease water treatment costs and improve water 163 

quality (Vaughn et al. 2008; Newton et al. 2011; Kreeger et al. 2018). Where mussel biomass is 164 

high in comparison to water volume, or where hydrologic residence times are long, mussels can 165 

filter a substantial amount of water (Vaughn et al. 2004). For example, mussels were able to 166 

clear the entire volume of a 440,000 m3 lake in less than a day, resulting in enhanced water 167 

clarity (Chowdhury et al. 2016). Efforts are underway to restore freshwater mussel filtration 168 

capacity to U.S. mid-Atlantic watersheds with the goal of improving water clarity and quality 169 

(Kreeger et al. 2018). Some groups of gastropods (e.g., Viviparidea and Bithynidae) also 170 

function as filter-feeders in aquatic ecosystems (Brown and Lydeard 2010), thus likely providing 171 

similar benefits to water clarity (see Olden et al. 2013) and particulate nutrient removal. Future 172 

research on snail filtration capacity and their effects on water quality could broaden our 173 

understanding of the ecosystem services gastropods provide. Freshwater mussels also improve 174 

drinking water quality by filtering pathogens or contaminants such as coliform bacteria, 175 

pharmaceuticals, personal care products, and algal toxins (Mersch and Johansson 1993; Downing 176 

et al. 2014; Ismail et al. 2014, 2015; Hwang et al. 2021) and sequestering these contaminants in 177 

their soft tissue and shell (Giari et al. 2017; Archambault 2020). Less is known about filter-178 

feeding gastropods but based on work on bivalves (Roditi et al. 2000; Baines et al. 2005), we 179 

hypothesize that gastropods may be able to remove dissolved organic matter as well as materials 180 

such as heavy metals. Further work is needed to understand what mollusks can filter from the 181 
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environment, what they sequester, the ultimate fate of sequestered materials, and how these 182 

aspects of filtration vary among species and environmental contexts. 183 

Biofilm grazing.—Snails are important grazers that can substantially reduce algal and 184 

biofilm biomass (Lamberti et al. 1987; Hill et al. 1992; Rosemond et al. 1993). Nuisance and 185 

toxic algal blooms negatively affect wildlife and human health (Wurtsbaugh et al. 2019). Some 186 

work has shown that freshwater snails can help control algal blooms including nuisance 187 

cyanobacteria and toxic algae (Zhang et al. 2012; Groendahl and Fink 2017). More research is 188 

needed to better understand snails’ ability to control algal blooms and their other functional roles 189 

in freshwater systems, particularly for detritivorous and filter-feeding snails. 190 

   191 

Supporting Habitat Services 192 

Nutrient storage and cycling.—Mollusks provide important supporting services such as 193 

nutrient recycling, translocation and storage, and they may influence nutrient abatement (i.e., 194 

nutrient removal). As mollusks filter-feed or graze, they convert energy and associated nutrients 195 

in their food into soft tissue, shell and biodeposits (feces and pseudofeces), and they release 196 

bioavailable dissolved nutrients that support primary producers (Spooner and Vaughn 2006; 197 

Strayer 2014; Atkinson and Vaughn 2015) and detritus-based food webs (Atkinson et al 2021; 198 

Hopper et al. 2021a).  199 

 Nutrient storage by mollusks is an overlooked, but potentially valuable, ecosystem 200 

service for nutrient abatement. For example, nitrogen (N)-trading programs in estuarine settings 201 

estimate the value of nitrogen assimilated by oysters at $50 to $181/kg N /year (Rose et al. 202 

2021). Currently, similar programs to mitigate nutrient loading in freshwater environments do 203 

not exist, but they are being considered (Strayer et al. 2019; Wood et al. 2021). Freshwater 204 
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mollusks assimilate nutrients into both their soft tissues and shells and can store kilograms of 205 

carbon (C), N and phosphorus (P), as well as micronutrients, at a river reach (Atkinson and 206 

Vaughn 2015; Hopper et al. 2021b). Additionally, many species are relatively long-lived, and 207 

their shells can persist for decades (Strayer and Malcolm 2007; Atkinson et al. 2018), possibly 208 

providing long-term storage of nutrients such as calcium. Thus, long-term storage and 209 

sequestration via burial could be an important, but often overlooked, ecosystem service provided 210 

by freshwater mollusks.  211 

Nutrients that are not assimilated into soft tissue and shell are egested as biodeposits or 212 

excreted as bioavailable dissolved nutrients (Atkinson and Vaughn 2015; Strayer 2014; Hopper 213 

et al 2021a). Soluble nutrients excreted into the water column by mollusks are readily taken up 214 

by algae and heterotrophic bacteria (Evans-White and Lamberti 2005; Leiss and Haglund 2007; 215 

Vaughn et al. 2008; Bril et al. 2014). Snails (Elimia spp.) were an important source of recycled 216 

nitrogen in a USA stream, excreting twelve times more nitrogen than they accumulated in 217 

biomass during spring growth, and assimilating and excreting up to 50% of the nitrogen initially 218 

taken up by autotrophs and leaf microbes (Hill and Griffiths 2017). Thus, where mollusk 219 

biomass is locally high, mollusks can create “biogeochemical hotspots” where nutrient recycling 220 

and material flux is increased, leading to concentrations of nutrients that can exceed background 221 

ambient concentrations of bioavailable nutrients (Hall et al. 2003; Strayer 2014; Atkinson and 222 

Vaughn 2015; Hopper et al. 2021a). Mollusks also can affect nutrient cycling of entire 223 

ecosystems. In a small North American stream, non-native New Zealand mud snails 224 

(Potamopyrgus antipodarum) dominated carbon sequestration and nitrogen excretion because of 225 

their high biomass and ubiquitous distribution (Hall et al. 2003). If bioavailable nutrients are 226 

limiting, fertilization by mollusk excreta can lead to spatial variation in algal community 227 
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assemblages (Atkinson et al. 2013) and increases in biomass of benthic algae, 228 

macroinvertebrates, fishes, and riparian invertebrates and vertebrates (Allen et al. 2012; Atkinson 229 

et al. 2014; Lopez et al. 2020; Simeone et al. 2021). Grazing by snails also can reduce 230 

macrophyte biomass. Most work on this topic focused on impacts of invasive snails on native 231 

aquatic plants (Yang et al. 2018; Bissattini et al. 2021), but native snails also can control invasive 232 

plants (Baker et al 2010). Mollusks also have bottom-up food web effects as prey for other 233 

organisms such as crayfishes (Crowl and Covich 1990; Alexander and Covich 1991), fishes 234 

(Brown and Lydeard 2010), muskrats (Tyrrell and Hornbach 1998; Haag 2012), and turtles 235 

(Atkinson 2013).  236 

Mollusks also have indirect effects on nutrient cycles by modifying biogeochemical 237 

reactivity, microbial communities, and redox gradients. Their interactions with the sediments 238 

alter oxygen profiles and fluxes of nutrients from the sediment and water column (Matisoff et al. 239 

1985; Boeker et al. 2016). Due to their interactions with the benthic sediments and their high 240 

ammonia excretion and biodeposition rates, freshwater mussels enhance denitrification and 241 

anaerobic ammonium oxidation (anammox) rates in benthic sediments (Hoellein et al. 2017; 242 

Trentman et al. 2018; Nickerson et al. 2019; Atkinson and Forshay 2022). This is beneficial for 243 

water quality because denitrification results in the removal of nitrogen from the ecosystem; this 244 

service has received considerable attention in marine settings with oysters and other marine 245 

mollusks (Newell et al. 2005; Kellogg et al. 2018; Rose et al. 2021). Additional work examining 246 

how freshwater mollusks influence microbially mediated processes could increase our 247 

understanding of the breadth of ecosystem services mollusks provide. Such effects could be 248 

substantial given the high biomass of mollusks in some ecosystems and their important roles in 249 

nutrient cycling.  250 
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Habitat engineering.—Stream dwelling organisms must cope with high flows (Lopez and 251 

Vaughn 2021). Mollusks physically engineer ecosystems through their shell production and 252 

movements across and within the benthic substrate, provisioning habitat for other organisms. 253 

Mollusk shells generate complexity in benthic habitats that influence processes across trophic 254 

levels (Gutiérrez et al. 2003). Both living shells and spent shells enhance habitat complexity and 255 

provide a hard substrate for the settlement and establishment of organisms, including 256 

microscopic and macroscopic algae (Francoeur et al. 2002; Abbott and Bergey 2007; Lukens et 257 

al. 2017), macrophytes (Vaughn et al. 2002), macroinvertebrates (Spooner and Vaughn 2006; 258 

Vaughn and Spooner 2006; Simeone et al. 2021), and fishes (Hopper et al. 2019). Freshwater 259 

mussel aggregations can modulate near-bed velocities and turbulence in rivers over decadal time 260 

scales, which may enhance bed stability and create habitat for other stream-dwelling organisms 261 

by decreasing flow force and velocity (Sansom et al. 2018a, 2018b; Sansom et al. 2020). As 262 

water flows past mussels, low-velocity refugia form behind them (Kumar et al. 2019), decreasing 263 

the hydrodynamic forces on the streambed downstream. Moreover, horseshoe vortices or 264 

complex wake structures are created around partially exposed mussels (Sansom et al. 2018a; 265 

Constantinescu et al. 2013; Wu et al. 2020), and such features are further modified when mussels 266 

are filtering (Wu et al. 2020). These hydraulic modifications can have important implications for 267 

other stream-dwelling organisms with specific microhabitat hydraulic preferences (e.g., Davis 268 

1986; Bouckaert and Davis 1998). Overall, mussel aggregations have a reciprocal influence on 269 

near-bed flow because they both influence, and are constrained by, hydrodynamic forces at the 270 

streambed (Lopez and Vaughn 2021). In addition, shells provide spawning sites and serve as 271 

refugia for some fishes (Etnier and Starnes 1993; Aldridge 1999; Wisniewski et al. 2013). 272 

Locally high densities of shells, such as at mussel beds, increase the potential for strong 273 
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hydraulic effects over extended spatial (tens to hundreds of meters) and temporal (decadal) 274 

scales (Strayer 2020). Much less is known about whether snails provide hydrodynamic refugia 275 

and/or stabilize sediments, but small stream invertebrates, such as caddisflies, can alter stream 276 

sediment dynamics and hydraulics when densities are high (Albertson and Allen 2015; Maguire 277 

et al. 2020; Mason and Sanders 2021; Mason et al. 2021). Thus, it is reasonable to expect that 278 

gastropods, with their sturdy shell, gripping foot and mucus trails, also might stabilize sediment.  279 

Beyond the obvious direct habitat provisioning of the shell, mollusks can increase habitat 280 

availability through their grazing and bioturbation activities. Filter-feeding bivalves increase the 281 

photic zone in lakes and rivers and enhance benthic substrate organic matter, allowing 282 

colonization by benthic macrophytes and aquatic insects (Strayer 2020). Grazing by invasive 283 

snails (Pomacea canaliculata) can have strong top-down effects by reducing biomass of aquatic 284 

plants, especially in shallow lakes with high nutrient loads (Gao et al. 2021; Liu et al. 2021), 285 

possibly leading to shifts from clear to turbid stable states. State shifts such as this can reduce 286 

light penetration in littoral zones and visibility for sight-feeding predators, with cascading effects 287 

on food webs. Overall, mollusks appear to have varied and sometimes strong effects on stream 288 

and lake habitats, which likely influence many other aquatic organisms. 289 

 290 

Cultural Services 291 

Freshwater mollusks provide many cultural services to humans. Large, durable 292 

freshwater mussel shells are particularly important for these services. Archaeological studies 293 

have shown that in Neolithic northern Europe, large mussel shell middens were used seasonally 294 

by pottery-using hunter-gatherer communities to temper pottery (Bērziņš et al 2014). In North 295 

America, beads and other ornaments made from shells were used in rituals and ceremonies 296 
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(Claassen 2008; CTUIR 2020). For example, the Winnebago tribe in Wisconsin, USA, used shell 297 

beads in rituals, produced utensils and fishing hooks from shells, and used powdered shell to 298 

temper pottery (Kuhm 2007). Currently, mollusk shells are sometimes used to ornament graves 299 

in the southern USA (Haag 2012). In the USA, the abundance of mussels in some areas invoked 300 

a sense of place that was translated into names of river reaches (e.g., Muscle Shoals and 301 

Išáaxuyi; Haag 2012; Hunn et al. 2015; Vaughn 2018). Living mollusks also bring humans 302 

enjoyment and are commonly sold internationally in the aquarium and ornamental pet trade (Ng 303 

et al. 2016; Patoka et al. 2017). In some cases, this practice has resulted in accidental 304 

introductions of mollusks into new ecosystems (Karatayev et al. 2009). Additionally, mollusks’ 305 

regulating services (e.g., filtration, grazing) improve human perceptions of freshwater 306 

ecosystems by enhancing water clarity and other characteristics. For example, grazing by snails 307 

(Haitia acuta) reduces the occurrence of large algal mats (Parr et al. 2020), which can be 308 

unsightly to humans. Mollusks are also used in education and research to improve understanding 309 

of ecosystem health, and they are used as biomonitors for contaminants and pathogens (Mersch 310 

and Johansson 1993; Giari et al. 2017). Extensive toxicology research has evaluated mollusks’ 311 

sensitivities to various contaminants, which have been used to evaluate water quality criteria 312 

(Augspurger 2003; Wang et al. 2007). Lastly, the bequest or existence value of mollusks is an 313 

important cultural service because people derive satisfaction from preserving the natural 314 

environment for future generations (Turner and Schaafsma 2015; Strayer 2017).  315 

 316 

The Conundrum of Services and Disservices by Invasive Mollusks 317 

The role of invasive mollusk species in providing ecosystem services has received 318 

attention primarily in terms of their negative effects or “disservices,” but they can also enhance 319 

services (Charles and Dukes 2008; Limburg et al. 2010; Walsh et al. 2016; Zieritz et al. 2022). 320 
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Invasive species often do not provide provisioning or cultural services in their introduced range 321 

because they have not been used traditionally for those purposes in the new area. However, some 322 

species may be introduced because of provisioning or cultural services they provide in their 323 

native range or elsewhere. For example, the bivalve Corbicula fluminea is thought to have been 324 

introduced into the USA in the 1930s by Chinese immigrants who used the species as a food 325 

item in its native range (Counts 1986). Thiarid snails have invaded freshwaters globally, and they 326 

frequently are introduced through the aquarium trade, where their grazing services are used to 327 

keep aquaria clean (Padilla and Williams 2004; Preston et al. 2021). However, despite their use 328 

in the aquarium trade, invasive snails often provide disservices, as many are intermediate hosts 329 

for trematodes and other parasites that negatively affect the health of fishes, birds, and humans 330 

(e.g., Pinto and de Melo 2011; Lv et al. 2018; Valente et al. 2020). 331 

 Filtering and nutrient recycling by invasive mussels can provide important regulating and 332 

supporting services. Nutrient fluxes from high densities of Corbicula exceeded or equaled those 333 

from native mussels in two North American rivers (Hopper et al. 2022). Invasive dreissenid 334 

mussels can drastically change energy and nutrient fluxes in a system (Li et al. 2021; Zieritz et 335 

al. 2022). At high densities, their filtering activity reduces phytoplankton and redirects nutrients 336 

and energy from the water column to the benthos, causing a decrease in pelagic production and 337 

an increase in benthic production (Higgins and Vander Zanden 2010; Karatayev et al. 2015). 338 

This includes an increase in benthic algae and macrophytes, which are often perceived as 339 

nuisances that inhibit boating, swimming, and other recreational uses in lakes and reservoirs. 340 

Fouling of native mussels by dreissenid mussels causes high native mussel mortality through 341 

resource competition (Haag et al. 1993; Karatayev et al. 2015; Beason and Schwalb 2022), and 342 

Corbicula clams also are suspected to negatively affect native mussels (Ferreira-Rodriguez et al. 343 
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2018; Modesto et al. 2019; Ferreira-Rodriguez et al. 2022). Both invasive species diminish 344 

ecosystem services provided by native mussels, but they also provide important benefits, 345 

especially in areas where the native mollusk filter-feeding community has been lost or severely 346 

degraded. For example, Dreissena can be used as biofilters to clear bioavailable contaminants 347 

from effluents before discharge (Binelli et al. 2015), and invasive Corbicula in Portugal assist in 348 

the remediation of acid mine drainage and other contaminants (Ismail et al. 2014; Rosa et al. 349 

2014). Understanding how invasive mollusks provide and alter ecosystem services can give 350 

additional insight about services provided by native mollusks and how replacement of native 351 

species by invasive species ultimately affects ecosystem structure and long-term function. 352 

 353 

DIRECTIONS FORWARD 354 

A large body of work shows the foundational role of mollusks in freshwater ecosystems 355 

(Vaughn and Hakenkamp 2001; Vaughn and Hoellein 2018; Zieritz et al. 2022), but many 356 

research gaps and questions remain. Here, we discuss research and information needed to better 357 

conceptualize mollusks in an ecosystem services framework, which will assist future 358 

conservation and management initiatives globally. 359 

 Baseline information for ecosystem services. Information on the species richness, 360 

composition, and density of historical mollusk communities is needed to establish a 361 

baseline to guide restoration of ecosystem services. Generating this information is 362 

especially important in understudied regions and likely will require combining 363 

reference site studies with modeling carrying capacity potential. 364 

 Quantitative comparisons of the biomass distribution and ecosystem services 365 

provided by co-occurring native and invasive mollusks. 366 
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 Standardized methods that can be used to quantify ecosystem services of mollusks 367 

globally. For example, a standardized method for estimating filtration rates among 368 

and within species would help guide evaluation of the capacity for mollusks to 369 

influence water clarity. This gap could be addressed by globally coordinated research 370 

networks. 371 

 The role of gastropods in provisioning ecosystem services. Snails can dominate 372 

benthic stream communities (Hawkins and Furnish 1987) and comprise >50% of 373 

invertebrate biomass in many systems (Brown et al. 2008; Brown and Lydeard 2010), 374 

but, apart from the effects of their grazing, little is known about their role in 375 

ecosystem processes. Quantitative assessments of gastropod abundance, functional 376 

feeding group status (algivorous and detritivores), nutrient excretion, and other 377 

physiological rates are needed. 378 

 Understanding and acknowledging the role of traditional ecological knowledge in 379 

maintaining and restoring ecosystem services (e.g., Michel et al. 2019). Traditional 380 

knowledge regarding the distribution of mollusks and their uses is necessary for 381 

documenting their importance to ecosystem services.   382 

 Understanding how factors such as carrying capacity and habitat suitability constrain 383 

mollusk populations and the ecosystem services they provide.   384 

 Understanding how ecosystem services provided by mollusks vary along 385 

environmental gradients (e.g., eutrophic-oligotrophic), systems (e.g., river, lake, etc.), 386 

and both time and spatial scales.  387 

In addition to research priorities, it is crucial that policymakers and the public recognize 388 

the value of and support restoration of mollusk-provided ecosystem services (“ecosystem service 389 
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goals”; Wood et al. 2021). Disseminating research results and outreach is necessary to build this 390 

support, and outreach efforts should be focused on regions where mollusks are diverse and 391 

abundant or where they could be to create a sense of place based on mollusks (e.g., areas where 392 

mollusks were once abundant). Building broad recognition of the value of mollusks is a major 393 

goal of the Freshwater Mollusk Conservation Society (FMCS 2016). We propose these actions to 394 

meet these outreach and policy goals: 395 

 Apply knowledge from work on ecosystem services provided by marine mollusks 396 

(i.e., successes and failures) to inform management and public outreach for 397 

freshwater mollusks. 398 

 Examine how environmental, monetary, and institutional factors can both constrain 399 

and create opportunities for the conservation and restoration of freshwater mollusks 400 

and the ecosystem services they provide.  401 

 Increase outreach efforts to various stakeholders in regions where mollusks are 402 

diverse and abundant to create a sense of place within freshwater ecosystems and 403 

value for natural communities. 404 

 Determine if research and management investments are being distributed to address 405 

actual needs (i.e., where people live and where services are needed) for enhanced 406 

ecosystem services. This could be determined using population census records 407 

coupled with evaluations of environmental degradation and public hearings and 408 

surveys. 409 

 Encourage collaboration between biologists, social scientists, economists, outreach 410 

specialists, and policymakers to develop valuation guidelines for ecosystem services 411 
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provided by freshwater mollusks and incorporate these guidelines into resource-412 

management planning. 413 

 414 

CONCLUSION 415 

The loss of biodiversity is an urgent concern, one that threatens the ecological integrity of 416 

ecosystems along with the essential services they provide (Dudgeon et al. 2006; Oliver et al. 417 

2015). Biodiversity loss is disproportionately high in freshwaters, particularly for mollusks 418 

(Lopes-Lima et al. 2018; Reid et al. 2019). Given their high diversity, global distribution and, in 419 

some places, astounding biomass, it is critical to understand how restoration of mollusks fits into 420 

the framework of ecosystem services. Research that quantifies the functional importance of 421 

freshwater mollusks in ecosystems within a societal and policy context creates opportunities to 422 

valuate these animals and the services they provide as tangible benefits to society. 423 
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Table 1. Examples of ecosystem services provided by freshwater mollusks. C = carbon, N = nitrogen, P = phosphorus. 916 

Service 
Type Use Example Selected References 

Provisioning 

Food 
Freshwater mussels have been a food source as far back as the Stone 
Age in Europe and 800 B.C. for Native Americans. Meadows et al. 2014; CTUIR 2020 

Mollusks are an important food commodity in southeast Asia. Bolotov et al. 2014; Dee et al. 2019 

Medicinal uses 
Freshwater clams, Corbicula, are used to treat liver disease and side 
effects of alcoholism. Bai et al. 2020; Zieritz et al. 2022 

Buttons 
Mussels were used extensively in the North American button industry 
from the mid-1800s to the mid-1990s. Haag 2012; Strayer 2017 

Pearl culture Beads from mussel shells are used as seeds in the pearl industry. Jiale and Yingsen 2009 

Regulating 

Water purification 

Water filtration: Freshwater mussels clear an extensive volume of 
water, but it depends on their density and the stream discharge. Vaughn et al. 2004; Vaughn et al. 2015 

Non-native snails filter a significant amount of particulates from the 
water column and their filtration rates rival freshwater bivalves. Olden et al. 2013 

Freshwater mussel filtration removes coliform bacteria, 
pharmaceuticals, personal care products, and algal toxins. 

Downing et al. 2014; Ismail et al. 2014; 
2015; 2016 

Contaminant sequestration Contaminants that are removed are sequestered by mollusks in the 
soft tissue and shell. 

Mersch and Johansson 1993; Zhang et 
al. 2012; Giari et al. 2017; Archambault 
2020 

Algal control 

Benthic grazing snails can remove and control algal biomass, including 
nuisance and toxic algae. 

Lamberti et al. 1987; Hill et al. 1992; 
Rosemond et al. 1993; Fervier et al. 
2020 

Filter-feeding mollusks can clear and control algal blooms including 
algal toxins.  Hwang et al. 2021 

Supporting Nutrient cycling & storage Mussel soft tissue and shell act as long-term storage of nutrients such 
as C, N, and P as well as micronutrients 

Strayer and Malcolm 2007; Atkinson 
and Vaughn 2015; Atkinson et al. 2018; 
Hopper et al. 2021b 
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Aggregations of mussels act as biogeochemical hotspots of dissolved 
organic matter and N and P  

Atkinson and Vaughn 2015; Vaughn et 
al. 2015; Hopper et al. 2021a 

Algal grazing and excretion by freshwater gastropods enhance primary 
production and nutrient uptake rates Hall et al. 2003; Hill and Griffiths 2017 

Denitrification 
Mussels contribute to the permanent removal of N from aquatic 
ecosystems by enhancing denitrification rates. 

Hoellein et al. 2017; Trentman et al. 
2018; Nickerson et al. 2019 

Habitat Provisioning 

Mussels improve and create habitat by enhancing hydrodynamic 
habitat complexity and decreasing turbulent shear stresses  

Sansom et al. 2018a, 2018b, 2020; Wu 
et al. 2020 

Mollusk shells provide habitat for algae, macrophytes, 
macroinvertebrates, and fish. 

Francoeur et al. 2002; Vaughn et al. 
2002; Spooner and Vaughn 2006; 
Vaughn and Spooner 2006; Abbott and 
Bergey 2007; Lukens et al. 2017; 
Hopper et al. 2019 

Food web support 

Mussel excreta was found to support biomass accrual of primary 
producers and aquatic insects. 

Atkinson et al. 2014; Atkinson et al. 
2018 

Mussels enhance sediment organic matter and increase 
macroinvertebrate abundance and diversity. 

Howard and Cuffey 2006; Spooner and 
Vaughn 2006; Simeone et al. 2021 

Mollusks comprise the diet of many organisms including crayfish, fish, 
turtles, and muskrats. 

Crowl and Covich 1990; Alexander and 
Covich 1991; Brown and Lydeard 2010; 
Haag 2012; Atkinson 2013 

Cultural 

Ornamentation for rituals 
Beads and other ornaments made from shells have been used in 
rituals and ceremonies.  Claassen 2008; CTUIR 2020 

Shells are used to ornament burial sites. Haag 2012 

Heritage and sense of 
place 

Locations with high abundances of mussels have been used in the 
names of locations within streams (e.g., Muscle Shoals, Alabama, USA) 

Haag 2012; Hunn et al. 2015; Vaughn 
2018 

There are multiple archeological and historical values from midden 
piles that have been discovered across Europe and North America 

Parmalee and Klippel 1974; Bērziņš et 
al 2014 

Education and research 
Mollusks have been used to study water pollution, set water quality 
criteria, as biomonitors, and to reconnect people to nature. 

Augsburger et al. 2003; Wang et al. 
2007; Michel et al. 2019 
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