Assessing the effects of extreme climatic events on unionid mussels

Astrid N. Schwalb, (co-authors in alphabetical order):
Lyubov E. Burlakova, David Ford, Juergen Geist, Alexander Y.
Karatayev, Zachary A. Mitchell, Alison A. Tarter
Assessing long-term changes in mussel communities require successful collaborations

David Ford
Alison Tarter
Zachary Mitchell
Lyubov Burlakova
Alexander Karatayev
Jürgen Geist
Climate crisis

Recent European Drought Was the Most Intense in At Least 250 Years
What to expect

From the Fourth National Climate Assessment, chapter about water:

“Variable precipitation and rising temperature are **intensifying droughts**, **increasing heavy downpours** and reducing snowpack. Reduced snow-to-rain ratios are leading to significant differences between the timing of water supply and demand. **Groundwater depletion is exacerbating drought risk.** Surface water quality is declining as water temperature increases and **more frequent high-intensity rainfall events** mobilize pollutants such as sediments and nutrients.”
Droughts and Flooding

Texas: vulnerable to periods of drought, Historically: 1910s, 1930s, 1950s, and 2010–2015 and 2022 Extreme heat predicted to become more common and higher temperatures at night will increase water temperatures.

Tropical cyclones cause exceptional rainfall rates in Gulf Coast region → Neches River Example:
Cedar Bayou, Texas:
51.9 inches (1317mm) during Hurricane Harvey

Rapid swings from extreme drought to flood

Germany: droughts could become more extreme
Adaptations to drying events

Behavioral avoidance/migration abilities:
Fish swim to deeper pools, insects fly away.

Physiological tolerance:
resistant eggs, juvenile or adult stages

Adaptive life history traits:
e.g. dormancy
Adaptations to drying events – mussels?

Behavioral avoidance:
Crawling, may track receding water
(Gough et al. 2012)
burrowing

Physiological tolerance:
Close valves,
emersion tolerance may be
species specific

Adaptive life history traits:
e.g. dormancy
Impact of drought on mussels

Decrease in mussel diversity, especially rare species.

Change in mussel community composition
(Gagnon et al. 2004; Golladay et al. 2004; Haag and Warren 2008)

Can lead to losses in mussel provided ecosystem services.
(Atkinson et al. 2014; Vaughn et al. 2015, DuBose et al. 2019)
Impact of flooding on mussels

Dislodgement out of suitable habitat
Mortality when transported to shallow areas that desiccate during low flows (Hastie et al., 2001; Sousa et al., 2012).

Transport to unsuitable or degraded habitat may lead to population declines and reduce population recovery (Karatayev et al., 2020).

Higher survival and faster recovery of some species?
Objectives

The objective was to test specific predictions for

(1) the impact of an extreme drought in 2011/2012 in the **Colorado** and **Neches** River basins in **Texas** and in 2018/2019 in **Germany**, and

(2) the impact of extreme flooding in 2017 and long-term changes in the Neches River basin (Texas Gulf coast).

by comparing recent and historical mussel community data collected at the same locations.
The objective was to test specific predictions for

(1) the impact of an extreme drought in 2011/2012 in the **Colorado** and **Neches** River basins in **Texas** and in 2018/2019 in **Germany**

by comparing recent and historical mussel community data.
Exceptional drought in 2011 – mid 2012 in Texas

https://www.drought.gov, Scharnweber et al. 2020

Extreme drought events

Texas 2011/2012

Germany 2018-2019

Texas 2011

https://www.drought.gov, Scharnweber et al. 2020
Hypotheses and predictions - drought

H1: Community-wide decline (no community shift)
Predictions:
Significant declines in CPUE and species richness,
less widespread species, more species with limited range.

H2: Differences between sites
Prediction:
More declines in species richness and CPUE in sections
with lower discharge and increased water temperature.
Study area: Upper Colorado River basin, TX

Texas Hill country
Mostly semi-arid ranchland.
Flashy systems,
Limestone and karst

Elm Creek (n = 4)
Concho River (n = 7)
San Saba River (n = 14)
Llano River (n = 5)
Study area: Lower Neches River basin in Big Thicket of Southeast Texas

- Heavily forested,
- Slow-moving
- Alluvium loam and clay
- Acidic
- High Organic load
- Extensive history of exploitation (logging, subsurface resource withdrawal, loss of wetland)
Study areas and datasets - drought

4 tributaries of the **Colorado River** in Central Texas.

Pre-drought data: 2005-2011, Burlakova and Karatayev

Post-drought data: 2017, Mitchell
n = 30 sites

Village Creek (Neches basin) in East Texas.

Pre-drought data: 2002, Bordelon & Harrel

Post-drought data: 2014, Ford
n = 13 sites

Same sites were re-surveyed, survey techniques consistent as much as possible
Assessing stream condition during drought

Summer 2012
NAIP IMAGERY
NIR Band

Black = Water
Hypotheses and predictions - drought

H1: Community-wide decline (no community shift)
Predictions:
Significant declines in CPUE and species richness,
less widespread species, more species with limited range.

H2: Differences between sites
Prediction:
More declines in species richness and CPUE in sections
with lower discharge and increased water temperature.
Community-wide declines?

Species richness and CPUE significantly lower (overall 50-64%) post-drought.

→ paired t-tests comparing species richness and CPUE per site and species. (Neches and Colorado River)

Colorado: mussels absent at 9 out of 30 sites post-drought.

Colorado tributaries: Discharge decreased 77-96% below long-term average levels.
Community shifts post-drought?

Neches:
Most species (12 of 18) declined, those showing increases were mostly opportunistic and periodic species.

Colorado:
- Correlation in relative abundances of species between pre- and post-drought periods
 \[r = 0.89–0.99, \ P = 0.05 \]
- Slight increases of equilibrium species, but no significant differences.

Summary: Some changes, but majority of species declined
Other detected changes post-drought

Neches:
Less widespread species
more species with limited range
post-drought

Pre-drought, $R^2 = 0.94$
Post-drought, $R^2 = 0.87$
Hypotheses and predictions - drought

H1: Community-wide decline (no community shift)
Predictions:
Significant declines in CPUE and species richness,
less widespread species, more species with limited range.

Yes, but some indications of community shift as well.
Hypotheses and predictions - drought

H1: Community-wide decline (no community shift)
Predictions:
Significant declines in CPUE and species richness, less widespread species, more species with limited range.

H2: Differences between sites
Prediction:
More declines in species richness and CPUE in sections with lower discharge and increased water temperature.
No significant relationship between changes in CPUE and discharge + water temperature for all sites

BUT:

Most severe declines in tributaries with the lowest discharge and highest estimated temperature (Concho River and Elm Creek)

Decrease in discharge:

- > 87%
- 82-86%
- 77-81%
Higher risk of desiccation in smaller streams

Examples from Bavaria, Germany
Droughts in 2003, 2018, 2019, 2022
Streams with *Unio crassus* and *Margaritifera margaritifera* dried out

Example Nebelbach, *Unio crassus*:
July 2019, 228 recently dead, 8 alive
May 2020, 250+ dead, 7 alive
Mitigation measures - Germany

Transfer of mussels into other water bodies

Example: Evacuation of >1000 *Margaritifera margaritifera* from Zinnbach in September 2019, transfer back in October,

Risks:
- Location of mussels may not be known and may only be found when already dead.
- High mortality in other water bodies if conditions are not suitable.
Other Mitigation measures - Germany

Use of former fish ponds for emergency water release (buffering effect)

Temporary barriers for water retention

Truck-based transportation and water release into drying streams
Longitudinal differences
Example: San Saba River

3 very different sections
Declines in intermittent middle section
Large declines also in lower San Saba, no dry sites
Increase at upper sites
→ higher search effort post-drought.
→ More spring-influenced
Ecological refuges in sections that go dry?

Ecological refuges will not prevent large declines of mussel populations during drought.

Do deeper perennial pools serve as important refuge for mussels to avoid desiccation?

→ Check out Kiara Cushway’s poster!
Other factors to consider

Impact of higher temperature on reproduction, e.g., glochidia development

Higher temperatures may favor invasive species

Example: Survival of glochidia at higher temperatures: non-native Chinese Pond Mussel (*Sinanodonta woodiana*) > native *Unio crasus*

Benedict & Geist 2021

Taeubert, El-Nobi & Geist 2014
Summary- drought

Community-wide declines post-drought observed in very different regions: semi-arid ranchland and forested wetlands in subtropical climate; small streams in temperate climate.

Some indications for community-shifts, opportunistic species may be quicker to recover, thick-shelled species may be better able to withstand desiccation, but only for limited time period.

Highest risk for streams with lower discharge.
Objectives

The objective was to test specific predictions for

(1) the impact of an extreme drought in 2011/2012 in the Colorado and Neches River basins in Texas and in 2018/2019 in Germany, and

(2) the impact of extreme flooding in 2017 and long-term changes in the Neches River basin (Texas Gulf coast).

by comparing recent and historical mussel community data collected at the same locations.
Hypotheses and predictions

H3: Impact of flooding: Community shift; (no community-wide decline)
Predictions:
No significant differences in CPUE and species richness
Comparing data from 16 sites collected in 2014 and 2018 (Hurricane Harvey 2017)

H4: Long-term changes:
Community-wide decline + community shift
Comparing data from 9 sites collected in 2002 and 2018
Most species (15 of 23 species) showed smaller changes (magnitude <10 ind./p-H).

No significant differences in CPUE and species richness; increase in species richness at the six most downstream sites.

Highest increases by *Glebula rotundata* (tolerant of brackish water)

→ Saltwater intrusion?

Community shifts post-flooding?
Saltwater intrusion

Rangia cuneata (Atlantic Rangia)

estuarian bivalve requires saline water to complete larval stage
Importance of flow refuge
- Upper Village Creek

Mussels found post-Harvey only within tree roots, providing structure and flow refuge
Impact of flooding depends on geomorphology

High erosion, highly incised channel, and little sinuosity in Mid Village Creek
Very few mussels found
Little structure in channel
Importance of flow refuge
- Lower Village Creek

Decline in slope compared to Mid Village Creek
Well connected with floodplains
Log jams provide structure

High mussel richness and abundance
Lower Neches River

Well connected to floodplain

Example of backwater pool
Small mussels indicated recruitment
High density and richness
Importance of backwaters/wetlands

Impact of flooding likely buffered by connectivity with extensive backwater areas,

→ may act as crucial refuges for mussels during extreme climatic events.

→ Thus, protecting wetlands is crucial to protect freshwater mussels and the ecosystem services they provide.
Hypotheses and predictions

H3: Impact of flooding: Community shift; (no community-wide decline)
Predictions:
No significant differences in CPUE and species richness

H4: Long-term changes:
Community-wide decline + community shift
Comparing data from 9 sites collected in 2002 and 2018
Significant declines in CPUE:
2018: 37.1 ± 25.1 mussels per p-H
2002: 64.1 ± 25.1 mussels per p-H

and species richness
2018: 4.8 ± 2.0, range: 0-13
2002: 9.2 ± 2.0, range: 6-12

Less widespread species,
more species with limited range
Long-term community shifts?

Shift from a dominance of Pleurobemini and Quadrulini to Amblemini and Lampsilini

A third (7 of 22) of the species declined or were not found. Declines were primarily equilibrium species. Most increases were fairly small.
Summary

Drought:
most detrimental impact leading to community-wide declines, indicated
by a significant decline of abundances, species richness and occupied
sites.

Flooding:
Community shift and changes in spatial distribution.
impact of flooding was likely buffered by connectivity with extensive
backwater areas.
→ crucial refuges for mussels during extreme climatic events

Long-term:
community-wide declines + community shifts
dominance of species more tolerable of disturbance.
Thanks!