Making your Survey Effort Count Towards the USFWS Species Status Assessment Process

Amanda Rosenberger
Daniel Fitzgerald
Kristin Irwin Womble

With Gratitude to:
Dave Smith, Mary Freeman,
Jason Dunham & others for Ideas and thoughts!!
What is Species Status Assessment?

• Species current condition relative to extinction risk

• Purpose: Describe the viability of species to support ESA decisions.
Conservation Principles in the SSA Process

Viability is *the ability of a species to sustain populations in the wild beyond a biologically meaningful time frame.*

Representation – adaptive potential to changing conditions

Resiliency – withstanding stochasticity

Redundancy – withstanding catastrophe
Representation – Adaptive potential to changing conditions

- Evolutionary potential
 - Multiple Populations
 - Range extremes
 - Habitat edges
 - Life history variability
Resiliency – Ability to withstand stochasticity

- Population Health
 - Abundance
 - Growth
 - Recruitment (multiple age classes)
 - Extent (larger populations than standard disturbances)
Redundancy – Withstanding catastrophe

- Number and distribution of populations
- Spatially AND Temporally uncorrelated
Different dynamics in stocks of Bristol Bay sockeye produce portfolio effects in fisheries.
Resiliency
- Good Water Quality
- Extent of Occupied Range
- Population Abundance
- Spatial Complexity of Occupied Range
- Suitable Habitat

Resilient populations that represent entire breadth of diversity

Representation
- Genetic Diversity
- Morphological Diversity
- Behavioral Diversity
- Physiographic Province Diversity

Species Viability

Redundancy
- Multiple Populations across the range of variability

Spatially uncorrelated populations that maintain connectivity

Multiple Resilient Populations
DON'T MIND ME I'M JUST DOING SCIENCE STUFF
SSA’s context within the FWS workflow

- Project Planning
- Species Status Assessment
 - Analysis
 - Reporting
 - Peer Review
- Decision Analysis
- Decision Document
- Review and Surname Process

Input from States and Other Experts
Components of Species Status Assessment?

• Three stages:

 SPECIES’ ECOLOGY

 Current Availability
 or Condition of Ecological Needs

 SPECIES’ CURRENT CONDITION

 Future Availability
 or Condition of Ecological Needs

 SPECIES’ FUTURE CONDITION
Information Needs: Species Ecology

Life history, ecological relationships, and current condition

- Where we can be most helpful:
 - Tolerance thresholds of temperature, water quality, and other threats
 - Resolve taxonomic questions
 - Provide reliable distribution data (presence and absence)
 - Provide information on relative health and continuity of populations
Tolerance, Habitat Requirements, Life History

Upper thermal tolerances of early life stages of freshwater mussels

Tamara J. Pandolfo¹,6, W. Gregory Cope¹,7, Consuelo Arellano²,8, Robert B. Bringolf³,9, M. Christopher Barnhart⁴,10, AND Edward Hammer⁵,11

RIVERSCAPE-SCALE MODELING OF FUNDAMENTALLY SUITABLE HABITAT FOR MUSSEL ASSEMBLAGES IN AN OZARK RIVER SYSTEM, MISSOURI

Kayla N. Key¹,², Amanda E. Rosenberger³, Garth A. Lindner⁴, Kristen Bouska⁵, and Stephen E. McMurray⁶

Host Identification and Glochidia Morphology of Freshwater Mussels from the Altamaha River Basin

Jennifer A. Johnson¹, Jason M. Wisniewski², Andrea K. Fritts¹, and Robert B. Bringolf¹,*
Resolving Taxonomic Questions

Genetic and morphological characterization of the freshwater mussel clubshell species complex (*Pleurobema clava* and *Pleurobema oviforme*) to inform conservation planning

Cheryl L. Morrison¹ | Nathan A. Johnson² | Jess W. Jones³ | Michael S. Eackles¹ | Aaron W. Aunins¹ | Daniel B. Fitzgerald¹ | Eric M. Hallerman⁴ | Tim L. King¹,
Information Needs: Species Ecology

Life history, ecological relationships, and current condition

- Where we can be most helpful:
 - Tolerance thresholds of temperature, water quality, and other threats
 - Resolve taxonomic questions
 - Provide reliable distribution data (presence and absence)
 - Provide information on relative health and continuity of populations

With this, we can resolve many ecological relationships
Clubshell and TN Clubshell range
Combined Species Assessments
Slabside Pearlymussel Distribution (HUC8s).
Current Conditions: Data needed

• Distribution, abundance, occurrence, etc.
 • (data needs to be accessible and well organized)

• Repeat surveys for detectability, turnover, trends

• Evidence of reproduction (shell lengths and size class structure)

• Information on shell condition (fresh dead or fossil shells?)

• Method!!!!!!
The Importance of Method
Size Class Distribution – Visual Only
Size Class Distribution – with Excavation
Consider common relationships

• Abundance ~ Diversity ~ Recruitment

• Healthy Populations tend to have:
 • High abundance
 • High continuity over their ranges
 • Lots of neighbors in species-rich beds

• Examine those relationships with your data sets
 • Inference is our friend!!
Standard practices

- Repeat Sampling
 - Detectability

- Double sampling
 - Inferential power

- Continuity (longitudinal surveys)
- Coordinates (spatially explicit)
Information Needs – Statewide Database

- Data must be explicit
 - Spatially
 - Temporally
 - Method

- Information
 - Occurrence
 - Size
 - Method
 - Collector/ Program
 - Shell condition

- Searchable
- Map based
- Expandable
- Centralized
Components of Species Status Assessment?

- Three stages:
 - **SPECIES’ ECOLOGY**
 - Current Availability or Condition of Ecological Needs
 - **SPECIES’ CURRENT CONDITION**
 - Future Availability or Condition of Ecological Needs
 - **SPECIES’ FUTURE CONDITION**
What we can DO with these data:
Developing resilience criteria

• Abundance
 • Abundant, Common, Rare

• Reproduction
 • Evidence of recruitment
 • Increasing or decreasing trend in time series

• Distribution
 • Occurs continuously over X river km
 • % occurrence over range in river system (patchy)
 • Rare or small area of occurrence
Current Conditions

42 - 62% range reduction
Components of Species Status Assessment?

• Three stages:

 - **SPECIES’ ECOLOGY**
 - Current Availability or Condition of Ecological Needs

 - **SPECIES’ CURRENT CONDITION**
 - Future Availability or Condition of Ecological Needs

 - **SPECIES’ FUTURE CONDITION**
Future Conditions: Risk analysis

• Intended to forecast likelihood of extinction

• Data needed
 • Good historical and current data for solid projection models
 • Models on how populations may change and the impact of threats

• An example - Threats analysis as basis for a projection model
species data

classification criteria

current conditions

landscape analysis

risk of extirpation

ordinal regression
Bottom Lines for Species Ecology

- Taxonomic resolution
- Tolerance studies
- Metanalysis and generalized studies needed
- Community level analysis and reporting
Bottom Lines for Current Condition

- Repeat and continuous sampling
- Report methodology, combining extensive with intensive methods
- Assemblage-reporting even for single-species studies
- Identification of features of mussel concentrations indicating health
 - Distinguish relic shells from fresh dead and live
 - Recruitment (+/-) multiple age classes
 - Continuity of high-concentrations
 - Healthy host fish populations
 - Protected areas
- Identified list of potential species with presence AND absence
- Reporting of historical data with current data
- Reporting of data to centralized, standardized database
Bottom Lines for Future Conditions

• Risk analysis using occupancy data
• Understand how risks are distributed across the landscape
• Investigate causal factors for declines

Keep your FWS partners informed!!!
<table>
<thead>
<tr>
<th>Condition</th>
<th>Abundance</th>
<th>Reproduction</th>
<th>Distribution Criteria</th>
<th>Probability of Persistence<sup>†</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Abundant</td>
<td>Evidence of reproduction</td>
<td>Occurs in more than 50 river km</td>
<td>> 0.75</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Increasing trend or evidence of reproduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Abundant</td>
<td>Decreasing trend or no evidence of reproduction</td>
<td>Occurs in 10–50 river km</td>
<td>0.25–0.75</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>No information available</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td>Evidence of reproduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Common</td>
<td>Decreasing trend or no evidence of reproduction</td>
<td>Occurs in fewer than 10 river km</td>
<td>< 0.25</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td>Decreasing trend or no evidence of reproduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presence-absence data only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>Historical records of occurrence in watershed with no surveys in past 30 years</td>
<td>Subwatershed (HUC10) lacking site-specific surveys in watershed (HUC8) of known occurrence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extirpated</td>
<td>No live or fresh dead individuals collected in surveys within the past 30 years</td>
<td>No areas known to be currently occupied within watershed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abundant defined as more than 500 individuals reported or densities greater than 0.70/m²; common defined as 100–500 individuals reported or densities between 0.10–0.70/m²; rare defined as less than 100 individuals reported or densities fewer than 0.10/m².

[†]Probability of persistence represents estimated risk of extirpation over 30 years (roughly 3 generations).