An Overview of the Bacteriological Examination of Freshwater Mussels

Eric Leis
Fish Biologist
La Crosse Fish Health Center
U.S. Fish and Wildlife Service
Bacteria Overview

- Unicellular, Microscopic
 - Cell wall
 - DNA
- Inhabit Every Environment
 - 1 Million Bacterial Cells in a mL of water
- Nearly impossible to truly sterilize
- Some species can go from division to reproducing in 10 minutes
- E. coli can travel 25 times its body length in 1 second
Bacteria Overview

- Beneficial, Commensal or Parasitic
 - changing conditions
- Complex interactions between bacterial species can cause disease
 - May not be as simple as one species
Bacteriology at the LFHC

- Routine Health Inspections
- Identify pathogens in wild populations
 - Informed decisions regarding brood stock collection
- American Fisheries Society Bluebook
- Specific Pathogens
 - Yersinia ruckeri
 - Aeromonas salmoncida
 - Edwardsiella ictaluri
 - Renibacterium salmoninarum
Bacteriology at the LFHC

• *Yersinia ruckeri*
 • Causes disease in salmonids
 • High mortality rates
 • Identified from freshwater mussels
Bacteriology at the LFHC

- *Aeromonas salmonicida*
 - Warm, cool and coldwater fish
 - High mortalities
 - Identified from freshwater mussels
Bacteriology at the LFHC

- *Edwardsiella ictaluri*
 - Primarily Channel Catfish
 - “Hole in the Head” Disease
 - High Mortality Rates
Bacteriology at the LFHC

- *Renibacterium salmoninarum*
 - Salmonids
 - Bacterial Kidney Disease
 - Large Mortality Events if Stressed
Bacteriology at the LFHC

- Culture bacteria
 - Kidney
- Tryptic Soy Agar (TSA)
- Incubate 23°C
- Isolate
 - Pure Cultures
- Identify
 - Morphology (Gram Stain)
 - Motility
 - Biochemical Tests
 - Carbohydrate Fermentation
- Identification
 - Biolog
 - PCR
 - DFAT
Bacteriology

- Fish
 - Specific bacteria
 - Standardized Methods
- Marine Mussels
 - Economic Impact
- Freshwater Mussels
 - Largely unknown
 - Lack of consensus
Hurdles to Studying Mussel Bacteriology

- Difficult to study
 - Aquatic Environment
 - Contamination
 - Bioconcentrators
 - Food Source
 - Relationship to Mussels
 - Symbiotic
 - Mutualism
 - Commensal
 - Pathogen
 - Incidental
 - Acquired during siphoning
Hurdles to Studying Mussel Bacteriology

- Sample Collection
 - Organs
 - Visceral Mass
 - Removed
 - Externally Disinfected
 - Homogenized
 - Fluids
 - Hemolymph
- Growth Media
 - Culture living bacteria
 - May require more specialized media
 - Slow growing bacteria may be outcompeted
- Metagenomics
 - Highly sensitive DNA based assay
 - Can be expensive

Starliper, Powell and Garner 2009
Hurdles to Studying Mussel Bacteriology

• Obtain more background information
 • Geographical Areas
 • Unionid Species
 • Sample Type
 • Mussels in Culture
 • May be critical in our understanding of Unionid diseases

• Mussel Mortality Event
 • Examined quickly
 • Very few answers historically
Bacteriology Surveys of Unionid Mussels

- Began as a survey of Unionids from the upper Mississippi River
 - Tony Goldberg (University of Wisconsin)
 - Diane Waller (USGS)
 - Sara Erickson (USFWS)
- Mortality event in Clinch River allowed for comparison of the culturable bacterial communities
 - Jordan Richard (USFWS)
A Survey of Unionid Mussels from the upper Mississippi River

- Survey 14 Unionid Species (101 Individuals) in the upper Mississippi River basin
 - Black Sandshell
 - Deertoe
 - Elktoe
 - Fatmucket
 - Fragile Papershell
 - Giant Floater
 - Hickory Nut
 - Pink Heelsplitter
 - Plain Pocketbook
 - Three-horn Wartyback
 - Three Ridge
 - Wabash Pigtoe
 - White Heelsplitter
 - Butterfly
A Survey of Unionid Mussels from the upper Mississippi River

- Hemolymph
 - Nonlethal sample
 - Relative disconnect with the aquatic environment
- Circulatory system
A Survey of Unionid Mussels from the upper Mississippi River

- Open the Mussels with reverse pliers
- Sterilize adductor muscle with 70% Isopropyl Alcohol
- Draw Hemolymph
 - Anterior Adductor muscle
- Place two drops onto Tryptic Soy Agar (TSA)
- Incubate at 23°C for one week
A Survey of Unionid Mussels from the upper Mississippi River

- Sample colonies
- Extract DNA
 - Prepman Ultra Reagent
- PCR primers targeting 16S rRNA gene
 - Regularly used in bacterial taxonomy
A Survey of Unionid Mussels from the upper Mississippi River

- Sanger Sequencing
 - Whitney Genetics Lab
- BLASTn search
A Survey of Unionid Mussels from the upper Mississippi River

- 180 bacterial isolates identified from 74 individuals
 - Cultured bacteria from 73% of individuals sampled

- No obvious pathogens detected

- Trends......
 - *Bacillus* spp. isolated from 23% of individuals (23 of 101)
 - *Aeromonas* spp. isolated from 16% of individuals (16 of 101)

- *Yersina ruckeri* and *Aeromonas salmonicida*
 - Certifiable fish pathogens
 - Several isolations and locations
A Survey of Unionid Mussels from the upper Mississippi River

- *Bacillus* spp.
 - Hearty group of bacteria
 - Wide ranges of temperature, pH, UV, salinity, etc.
 - Variety of environments
 - Can be pathogens to plants and animals
 - Produce antibiotic and bacteriostatic compounds
 - Breakdown metals and chemicals
 - Many *Bacillus* spp. (including our isolates) convert urea into calcium carbonate
 - Used for "living concrete" that can heal itself
 - Probiotic to help chickens produce thicker egg shells
A Survey of Unionid Mussels from the upper Mississippi River

- Calcium carbonate production
 - *Brevundimonas diminuta*
 - *Pseudomonas stutzeri; P. koreensis; P. putida*
 - *Viridibacillus arenosi*
 - *Lysinibacillus boronitolerans; L. sphaericus*
 - *Caulobacteraceae bacterium*
- *Exiguobacterium* spp. (mostly *E. indicum*)
 - Chondroitin
- *Aeromonas* spp.
 - Ubiquitous
 - Likely secondary pathogens
A Survey of Unionid Mussels from the upper Mississippi River

- Isolates involved in bioremediation
 - 40 mussels (64 isolates)
 - Heavy metals (Chromium, Arsenic, Lead, Cadmium, Mercury, etc.) Polycyclic Aromatic Hydrocarbons (PAH’s), PCB’s, Atrazine, Aflatoxins, etc.
 - Bacillus cereus; B. thuringiensis; B. pumilis; B. aquimaris
 - Kocuria rosea
 - Arthrobacter sulfonivorans; Arthrobacter oxydans
 - Microbacterium testaceum; Microbacterium oleivorans
 - Xanthomonadaceae bacterium
 - Stenotrophomonas chelatiphaga
 - Sporosarcina ginsengisoli
 - Acidovorax sp.
 - Viridibacillus arenosi
 - Agrobacterium tumefaciens; Agrobacterium fabrum
 - Acinetobacter dispersus; Acinetobacter haemolyticus; Acinetobacter Iwoffii
 - Cellulomonas hominis
 - Microbacterium petrolearium
 - Cellulosimicrobium funkei; Cellulosimicrobium cellulans
 - Microbacterium paraoxydans
 - Alpha proteobacterium
 - Pseudoxanthomonas mexicana
 - Sphingopyxis chilensis
 - Curtobacterium herbarum
 - Stenotrophomonas maltophilia
 - Rhodococcus erythropolis
 - Variovorax paradoxus
 - Pseudoarthrobacter sp
A Survey of Unionid Mussels from the upper Mississippi River

• Other interesting isolates
 • *Moraxella osloensis*
 • Produces molluscicide
 • Symbiotic with Nematode
 • Toxic to grey garden slug
 • *Pseudomonas syringae*
 • Allows water to freeze at higher temps
 • Used by ski resorts
 • Role in atmosphere
 • *Chromobacterium violaceum*
 • Produces Violacein
 • *Pseudomonas entomophila*
 • Toxic to insects
 • Used in agriculture as natural control method
 • *Stenotrophomonas rhizophila*
 • Produces osmoprotective substances to help plants
Mortality event in the Clinch River

- Clinch River
 - Eastern TN, VA
 - Several mortality events
 - Pheasantshell

- Sampled using same methods as UMR
Clinch River Results

- Shared between UMR and Clinch River
 - *Bacillus* spp.
 - Including species with high capacity for calcium carbonate production
 - *Aeromonas* spp.
 - *Pseudomonas* spp.
 - *Moraxella osloensis*

- Some Differences
 - *Yokenella regensbergei* (47%; 9 of 19 mussels)
 - Significance Unclear
 - Isolated from oil contaminated soils
 - Potential to degrade hydrocarbons
 - Reported as the most prevalent isolate in an Ebonyshell mortality event in Tennessee River, Alabama. (Starliper et al 2009)
 - Future work will determine importance of this isolate
Comparison of Clinch River to UMR

- Mississippi River
 - Bacteria associated with degrading toxic substances were isolated from 40% of the mussels

- Clinch River
 - Only a couple isolates
Mussel Bacteriology
Conclusions

• Collection baseline data is critical
 • Combination of metagenomic and culture methods
 • Understand the Bacterial Communities

• Work towards identifying pathogens and standard methods
 • Protect the animals brought into the hatchery

• *Yokenella regensbergei* deserves further study

• Similar to marine mussels- captive populations might play an important role in identifying causative agents of disease
Thanks!

- La Crosse Fish and Wildlife Conservation Office (USFWS)
- Upper Midwest Environmental Sciences Center (USFWS)
- Genoa National Fish Hatchery (USGS)
- Whitney Genetics Laboratory (USFWS)
Any Questions?

Mara Koenig